IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.15244.html

Non-parametric Causal Inference in Dynamic Thresholding Designs

Author

Listed:
  • Aditya Ghosh
  • Stefan Wager

Abstract

Consider a setting where we regularly monitor patients' fasting blood sugar, and declare them to have prediabetes (and encourage preventative care) if this number crosses a pre-specified threshold. The sharp, threshold-based treatment policy suggests that we should be able to estimate the long-term benefit of this preventative care by comparing the health trajectories of patients with blood sugar measurements right above and below the threshold. A naive regression-discontinuity analysis, however, is not applicable here, as it ignores the temporal dynamics of the problem where, e.g., a patient just below the threshold on one visit may become prediabetic (and receive treatment) following their next visit. Here, we study thresholding designs in general dynamic systems, and show that simple reduced-form characterizations remain available for a relevant causal target, namely a dynamic marginal policy effect at the treatment threshold. We develop a local-linear-regression approach for estimation and inference of this estimand, and demonstrate promise of our approach in numerical experiments.

Suggested Citation

  • Aditya Ghosh & Stefan Wager, 2025. "Non-parametric Causal Inference in Dynamic Thresholding Designs," Papers 2512.15244, arXiv.org.
  • Handle: RePEc:arx:papers:2512.15244
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.15244
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.15244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.