IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.15113.html

Adaptive Weighted Genetic Algorithm-Optimized SVR for Robust Long-Term Forecasting of Global Stock Indices for investment decisions

Author

Listed:
  • Mohit Beniwal

Abstract

Long-term price forecasting remains a formidable challenge due to the inherent uncertainty over the long term, despite some success in short-term predictions. Nonetheless, accurate long-term forecasts are essential for high-net-worth individuals, institutional investors, and traders. The proposed improved genetic algorithm-optimized support vector regression (IGA-SVR) model is specifically designed for long-term price prediction of global indices. The performance of the IGA-SVR model is rigorously evaluated and compared against the state-of-the-art baseline models, the Long Short-Term Memory (LSTM), and the forward-validating genetic algorithm optimized support vector regression (OGA-SVR). Extensive testing was conducted on the five global indices, namely Nifty, Dow Jones Industrial Average (DJI), DAX Performance Index (DAX), Nikkei 225 (N225), and Shanghai Stock Exchange Composite Index (SSE) from 2021 to 2024 of daily price prediction up to a year. Overall, the proposed IGA-SVR model achieved a reduction in MAPE by 19.87% compared to LSTM and 50.03% compared to OGA-SVR, demonstrating its superior performance in long-term daily price forecasting of global indices. Further, the execution time for LSTM was approximately 20 times higher than that of IGA-SVR, highlighting the high accuracy and computational efficiency of the proposed model. The genetic algorithm selects the optimal hyperparameters of SVR by minimizing the arithmetic mean of the Mean Absolute Percentage Error (MAPE) calculated over the full training dataset and the most recent five years of training data. This purposefully designed training methodology adjusts for recent trends while retaining long-term trend information, thereby offering enhanced generalization compared to the LSTM and rolling-forward validation approach employed by OGA-SVR, which forgets long-term trends and suffers from recency bias.

Suggested Citation

  • Mohit Beniwal, 2025. "Adaptive Weighted Genetic Algorithm-Optimized SVR for Robust Long-Term Forecasting of Global Stock Indices for investment decisions," Papers 2512.15113, arXiv.org.
  • Handle: RePEc:arx:papers:2512.15113
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.15113
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.15113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.