Author
Listed:
- Xianglin Wu
- Chiheb Ben Hammouda
- Cornelis W. Oosterlee
Abstract
Stochastic differential equations (SDEs) driven by fractional Brownian motion (fBm) are increasingly used to model systems with rough dynamics and long-range dependence, such as those arising in quantitative finance and reliability engineering. However, these processes are non-Markovian and lack a semimartingale structure, rendering many classical parameter estimation techniques inapplicable or computationally intractable beyond very specific cases. This work investigates two central questions: (i) whether integrating path signatures into deep learning architectures can improve the trade-off between estimation accuracy and model complexity, and (ii) what constitutes an effective architecture for leveraging signatures as feature maps. We introduce SigMA (Signature Multi-head Attention), a neural architecture that integrates path signatures with multi-head self-attention, supported by a convolutional preprocessing layer and a multilayer perceptron for effective feature encoding. SigMA learns model parameters from synthetically generated paths of fBm-driven SDEs, including fractional Brownian motion, fractional Ornstein-Uhlenbeck, and rough Heston models, with a particular focus on estimating the Hurst parameter and on joint multi-parameter inference, and it generalizes robustly to unseen trajectories. Extensive experiments on synthetic data and two real-world datasets (i.e., equity-index realized volatility and Li-ion battery degradation) show that SigMA consistently outperforms CNN, LSTM, vanilla Transformer, and Deep Signature baselines in accuracy, robustness, and model compactness. These results demonstrate that combining signature transforms with attention-based architectures provides an effective and scalable framework for parameter inference in stochastic systems with rough or persistent temporal structure.
Suggested Citation
Xianglin Wu & Chiheb Ben Hammouda & Cornelis W. Oosterlee, 2025.
"SigMA: Path Signatures and Multi-head Attention for Learning Parameters in fBm-driven SDEs,"
Papers
2512.15088, arXiv.org.
Handle:
RePEc:arx:papers:2512.15088
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.15088. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.