IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.14991.html

Adaptive Partitioning and Learning for Stochastic Control of Diffusion Processes

Author

Listed:
  • Hanqing Jin
  • Renyuan Xu
  • Yanzhao Yang

Abstract

We study reinforcement learning for controlled diffusion processes with unbounded continuous state spaces, bounded continuous actions, and polynomially growing rewards: settings that arise naturally in finance, economics, and operations research. To overcome the challenges of continuous and high-dimensional domains, we introduce a model-based algorithm that adaptively partitions the joint state-action space. The algorithm maintains estimators of drift, volatility, and rewards within each partition, refining the discretization whenever estimation bias exceeds statistical confidence. This adaptive scheme balances exploration and approximation, enabling efficient learning in unbounded domains. Our analysis establishes regret bounds that depend on the problem horizon, state dimension, reward growth order, and a newly defined notion of zooming dimension tailored to unbounded diffusion processes. The bounds recover existing results for bounded settings as a special case, while extending theoretical guarantees to a broader class of diffusion-type problems. Finally, we validate the effectiveness of our approach through numerical experiments, including applications to high-dimensional problems such as multi-asset mean-variance portfolio selection.

Suggested Citation

  • Hanqing Jin & Renyuan Xu & Yanzhao Yang, 2025. "Adaptive Partitioning and Learning for Stochastic Control of Diffusion Processes," Papers 2512.14991, arXiv.org.
  • Handle: RePEc:arx:papers:2512.14991
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.14991
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.14991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.