IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.13645.html

Linear Regression in a Nonlinear World

Author

Listed:
  • Nadav Kunievsky

Abstract

The interpretation of coefficients from multivariate linear regression relies on the assumption that the conditional expectation function is linear in the variables. However, in many cases the underlying data generating process is nonlinear. This paper examines how to interpret regression coefficients under nonlinearity. We show that if the relationships between the variable of interest and other covariates are linear, then the coefficient on the variable of interest represents a weighted average of the derivatives of the outcome conditional expectation function with respect to the variable of interest. If these relationships are nonlinear, the regression coefficient becomes biased relative to this weighted average. We show that this bias is interpretable, analogous to the biases from measurement error and omitted variable bias under the standard linear model.

Suggested Citation

  • Nadav Kunievsky, 2025. "Linear Regression in a Nonlinear World," Papers 2512.13645, arXiv.org.
  • Handle: RePEc:arx:papers:2512.13645
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.13645
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.13645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.