IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.13400.html

Policy-Aligned Estimation of Conditional Average Treatment Effects

Author

Listed:
  • Artem Timoshenko
  • Caio Waisman

Abstract

Firms often develop targeting policies to personalize marketing actions and improve incremental profits. Effective targeting depends on accurately separating customers with positive versus negative treatment effects. We propose an approach to estimate the conditional average treatment effects (CATEs) of marketing actions that aligns their estimation with the firm's profit objective. The method recognizes that, for many customers, treatment effects are so extreme that additional accuracy is unlikely to change the recommended actions. However, accuracy matters near the decision boundary, as small errors can alter targeting decisions. By modifying the firm's objective function in the standard profit maximization problem, our method yields a near-optimal targeting policy while simultaneously estimating CATEs. This introduces a new perspective on CATE estimation, reframing it as a problem of profit optimization rather than prediction accuracy. We establish the theoretical properties of the proposed method and demonstrate its performance and trade-offs using synthetic data.

Suggested Citation

  • Artem Timoshenko & Caio Waisman, 2025. "Policy-Aligned Estimation of Conditional Average Treatment Effects," Papers 2512.13400, arXiv.org.
  • Handle: RePEc:arx:papers:2512.13400
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.13400
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.13400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.