IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.12506.html

Explainable Artificial Intelligence for Economic Time Series: A Comprehensive Review and a Systematic Taxonomy of Methods and Concepts

Author

Listed:
  • Agust'in Garc'ia-Garc'ia
  • Pablo Hidalgo
  • Julio E. Sandubete

Abstract

Explainable Artificial Intelligence (XAI) is increasingly required in computational economics, where machine-learning forecasters can outperform classical econometric models but remain difficult to audit and use for policy. This survey reviews and organizes the growing literature on XAI for economic time series, where autocorrelation, non-stationarity, seasonality, mixed frequencies, and regime shifts can make standard explanation techniques unreliable or economically implausible. We propose a taxonomy that classifies methods by (i) explanation mechanism: propagation-based approaches (e.g., Integrated Gradients, Layer-wise Relevance Propagation), perturbation and game-theoretic attribution (e.g., permutation importance, LIME, SHAP), and function-based global tools (e.g., Accumulated Local Effects); (ii) time-series compatibility, including preservation of temporal dependence, stability over time, and respect for data-generating constraints. We synthesize time-series-specific adaptations such as vector- and window-based formulations (e.g., Vector SHAP, WindowSHAP) that reduce lag fragmentation and computational cost while improving interpretability. We also connect explainability to causal inference and policy analysis through interventional attributions (Causal Shapley values) and constrained counterfactual reasoning. Finally, we discuss intrinsically interpretable architectures (notably attention-based transformers) and provide guidance for decision-grade applications such as nowcasting, stress testing, and regime monitoring, emphasizing attribution uncertainty and explanation dynamics as indicators of structural change.

Suggested Citation

  • Agust'in Garc'ia-Garc'ia & Pablo Hidalgo & Julio E. Sandubete, 2025. "Explainable Artificial Intelligence for Economic Time Series: A Comprehensive Review and a Systematic Taxonomy of Methods and Concepts," Papers 2512.12506, arXiv.org.
  • Handle: RePEc:arx:papers:2512.12506
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.12506
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.12506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.