IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.12499.html

Explainable Prediction of Economic Time Series Using IMFs and Neural Networks

Author

Listed:
  • Pablo Hidalgo
  • Julio E. Sandubete
  • Agust'in Garc'ia-Garc'ia

Abstract

This study investigates the contribution of Intrinsic Mode Functions (IMFs) derived from economic time series to the predictive performance of neural network models, specifically Multilayer Perceptrons (MLP) and Long Short-Term Memory (LSTM) networks. To enhance interpretability, DeepSHAP is applied, which estimates the marginal contribution of each IMF while keeping the rest of the series intact. Results show that the last IMFs, representing long-term trends, are generally the most influential according to DeepSHAP, whereas high-frequency IMFs contribute less and may even introduce noise, as evidenced by improved metrics upon their removal. Differences between MLP and LSTM highlight the effect of model architecture on feature relevance distribution, with LSTM allocating importance more evenly across IMFs.

Suggested Citation

  • Pablo Hidalgo & Julio E. Sandubete & Agust'in Garc'ia-Garc'ia, 2025. "Explainable Prediction of Economic Time Series Using IMFs and Neural Networks," Papers 2512.12499, arXiv.org.
  • Handle: RePEc:arx:papers:2512.12499
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.12499
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.12499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.