IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.12334.html

Extending the application of dynamic Bayesian networks in calculating market risk: Standard and stressed expected shortfall

Author

Listed:
  • Eden Gross
  • Ryan Kruger
  • Francois Toerien

Abstract

In the last five years, expected shortfall (ES) and stressed ES (SES) have become key required regulatory measures of market risk in the banking sector, especially following events such as the global financial crisis. Thus, finding ways to optimize their estimation is of great importance. We extend the application of dynamic Bayesian networks (DBNs) to the estimation of 10-day 97.5% ES and stressed ES, building on prior work applying DBNs to value at risk. Using the S&P 500 index as a proxy for the equities trading desk of a US bank, we compare the performance of three DBN structure-learning algorithms with several traditional market risk models, using either the normal or the skewed Student's t return distributions. Backtesting shows that all models fail to produce statistically accurate ES and SES forecasts at the 2.5% level, reflecting the difficulty of modeling extreme tail behavior. For ES, the EGARCH(1,1) model (normal) produces the most accurate forecasts, while, for SES, the GARCH(1,1) model (normal) performs best. All distribution-dependent models deteriorate substantially when using the skewed Student's t distribution. The DBNs perform comparably to the historical simulation model, but their contribution to tail prediction is limited by the small weight assigned to their one-day-ahead forecasts within the return distribution. Future research should examine weighting schemes that enhance the influence of forward-looking DBN forecasts on tail risk estimation.

Suggested Citation

  • Eden Gross & Ryan Kruger & Francois Toerien, 2025. "Extending the application of dynamic Bayesian networks in calculating market risk: Standard and stressed expected shortfall," Papers 2512.12334, arXiv.org.
  • Handle: RePEc:arx:papers:2512.12334
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.12334
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.12334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.