IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.11943.html

How AI Agents Follow the Herd of AI? Network Effects, History, and Machine Optimism

Author

Listed:
  • Yu Liu
  • Wenwen Li
  • Yifan Dou
  • Guangnan Ye

Abstract

Understanding decision-making in multi-AI-agent frameworks is crucial for analyzing strategic interactions in network-effect-driven contexts. This study investigates how AI agents navigate network-effect games, where individual payoffs depend on peer participatio--a context underexplored in multi-agent systems despite its real-world prevalence. We introduce a novel workflow design using large language model (LLM)-based agents in repeated decision-making scenarios, systematically manipulating price trajectories (fixed, ascending, descending, random) and network-effect strength. Our key findings include: First, without historical data, agents fail to infer equilibrium. Second, ordered historical sequences (e.g., escalating prices) enable partial convergence under weak network effects but strong effects trigger persistent "AI optimism"--agents overestimate participation despite contradictory evidence. Third, randomized history disrupts convergence entirely, demonstrating that temporal coherence in data shapes LLMs' reasoning, unlike humans. These results highlight a paradigm shift: in AI-mediated systems, equilibrium outcomes depend not just on incentives, but on how history is curated, which is impossible for human.

Suggested Citation

  • Yu Liu & Wenwen Li & Yifan Dou & Guangnan Ye, 2025. "How AI Agents Follow the Herd of AI? Network Effects, History, and Machine Optimism," Papers 2512.11943, arXiv.org.
  • Handle: RePEc:arx:papers:2512.11943
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.11943
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.11943. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.