IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.11933.html

The Agentic Regulator: Risks for AI in Finance and a Proposed Agent-based Framework for Governance

Author

Listed:
  • Eren Kurshan
  • Tucker Balch
  • David Byrd

Abstract

Generative and agentic artificial intelligence is entering financial markets faster than existing governance can adapt. Current model-risk frameworks assume static, well-specified algorithms and one-time validations; large language models and multi-agent trading systems violate those assumptions by learning continuously, exchanging latent signals, and exhibiting emergent behavior. Drawing on complex adaptive systems theory, we model these technologies as decentralized ensembles whose risks propagate along multiple time-scales. We then propose a modular governance architecture. The framework decomposes oversight into four layers of "regulatory blocks": (i) self-regulation modules embedded beside each model, (ii) firm-level governance blocks that aggregate local telemetry and enforce policy, (iii) regulator-hosted agents that monitor sector-wide indicators for collusive or destabilizing patterns, and (iv) independent audit blocks that supply third-party assurance. Eight design strategies enable the blocks to evolve as fast as the models they police. A case study on emergent spoofing in multi-agent trading shows how the layered controls quarantine harmful behavior in real time while preserving innovation. The architecture remains compatible with today's model-risk rules yet closes critical observability and control gaps, providing a practical path toward resilient, adaptive AI governance in financial systems.

Suggested Citation

  • Eren Kurshan & Tucker Balch & David Byrd, 2025. "The Agentic Regulator: Risks for AI in Finance and a Proposed Agent-based Framework for Governance," Papers 2512.11933, arXiv.org.
  • Handle: RePEc:arx:papers:2512.11933
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.11933
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.11933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.