Author
Listed:
- Marcel Nutz
- Alessandro Prosperi
Abstract
We study the high-frequency limit of an $n$-trader optimal execution game in discrete time. Traders face transient price impact of Obizhaeva--Wang type in addition to quadratic instantaneous trading costs $\theta(\Delta X_t)^2$ on each transaction $\Delta X_t$. There is a unique Nash equilibrium in which traders choose liquidation strategies minimizing expected execution costs. In the high-frequency limit where the grid of trading dates converges to the continuous interval $[0,T]$, the discrete equilibrium inventories converge at rate $1/N$ to the continuous-time equilibrium of an Obizhaeva--Wang model with additional quadratic costs $\vartheta_0(\Delta X_0)^2$ and $\vartheta_T(\Delta X_T)^2$ on initial and terminal block trades, where $\vartheta_0=(n-1)/2$ and $\vartheta_T=1/2$. The latter model was introduced by Campbell and Nutz as the limit of continuous-time equilibria with vanishing instantaneous costs. Our results extend and refine previous results of Schied, Strehle, and Zhang for the particular case $n=2$ where $\vartheta_0=\vartheta_T=1/2$. In particular, we show how the coefficients $\vartheta_0=(n-1)/2$ and $\vartheta_T=1/2$ arise endogenously in the high-frequency limit: the initial and terminal block costs of the continuous-time model are identified as the limits of the cumulative discrete instantaneous costs incurred over small neighborhoods of $0$ and $T$, respectively, and these limits are independent of $\theta>0$. By contrast, when $\theta=0$ the discrete-time equilibrium strategies and costs exhibit persistent oscillations and admit no high-frequency limit, mirroring the non-existence of continuous-time equilibria without boundary block costs. Our results show that two different types of trading frictions -- a fine time discretization and small instantaneous costs in continuous time -- have similar regularizing effects and select a canonical model in the limit.
Suggested Citation
Marcel Nutz & Alessandro Prosperi, 2025.
"High-Frequency Analysis of a Trading Game with Transient Price Impact,"
Papers
2512.11765, arXiv.org.
Handle:
RePEc:arx:papers:2512.11765
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.11765. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.