IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.11649.html

Unified Approach to Portfolio Optimization using the `Gain Probability Density Function' and Applications

Author

Listed:
  • Jean-Patrick Mascom`ere
  • J'er'emie Messud
  • Yagnik Chatterjee
  • Isabel Barros Garcia

Abstract

This article proposes a unified framework for portfolio optimization (PO), recognizing an object called the `gain probability density function (PDF)' as the fundamental object of the problem from which any objective function could be derived. The gain PDF has the advantage of being 1-dimensional for any given portfolio and thus is easy to visualize and interpret. The framework allows us to naturally incorporate all existing approaches (Markowitz, CVaR-deviation, higher moments...) and represents an interesting basis to develop new approaches. It leads us to propose a method to directly match a target PDF defined by the portfolio manager, giving them maximal control on the PO problem and moving beyond approaches that focus only on expected return and risk. As an example, we develop an application involving a new objective function to control high profits, to be applied after a conventional PO (including expected return and risk criteria) and thus leading to sub-optimality w.r.t. the conventional objective function. We then propose a methodology to quantify a cost associated with this optimality deviation in a common budget unit, providing a meaningful information to portfolio managers. Numerical experiments considering portfolios with energy-producing assets illustrate our approach. The framework is flexible and can be applied to other sectors (financial assets, etc).

Suggested Citation

  • Jean-Patrick Mascom`ere & J'er'emie Messud & Yagnik Chatterjee & Isabel Barros Garcia, 2025. "Unified Approach to Portfolio Optimization using the `Gain Probability Density Function' and Applications," Papers 2512.11649, arXiv.org.
  • Handle: RePEc:arx:papers:2512.11649
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.11649
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.11649. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.