IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.11259.html

Robust Two-Sample Mean Inference under Serial Dependence

Author

Listed:
  • Ulrich Hounyo
  • Min Seong Kim

Abstract

We propose robust two-sample tests for comparing means in time series. The framework accommodates a wide range of applications, including structural breaks, treatment-control comparisons, and group-averaged panel data. We first consider series HAR two-sample t-tests, where standardization employs orthonormal basis projections, ensuring valid inference under heterogeneity and nonparametric dependence structures. We propose a Welch-type t-approximation with adjusted degrees of freedom to account for long-run variance heterogeneity across the series. We further develop a series-based HAR wild bootstrap test, extending traditional wild bootstrap methods to the time-series setting. Our bootstrap avoids resampling blocks of observations and delivers superior finite-sample performance.

Suggested Citation

  • Ulrich Hounyo & Min Seong Kim, 2025. "Robust Two-Sample Mean Inference under Serial Dependence," Papers 2512.11259, arXiv.org, revised Dec 2025.
  • Handle: RePEc:arx:papers:2512.11259
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.11259
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.11259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.