IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.10913.html

Reinforcement Learning in Financial Decision Making: A Systematic Review of Performance, Challenges, and Implementation Strategies

Author

Listed:
  • Mohammad Rezoanul Hoque
  • Md Meftahul Ferdaus
  • M. Kabir Hassan

Abstract

Reinforcement learning (RL) is an innovative approach to financial decision making, offering specialized solutions to complex investment problems where traditional methods fail. This review analyzes 167 articles from 2017--2025, focusing on market making, portfolio optimization, and algorithmic trading. It identifies key performance issues and challenges in RL for finance. Generally, RL offers advantages over traditional methods, particularly in market making. This study proposes a unified framework to address common concerns such as explainability, robustness, and deployment feasibility. Empirical evidence with synthetic data suggests that implementation quality and domain knowledge often outweigh algorithmic complexity. The study highlights the need for interpretable RL architectures for regulatory compliance, enhanced robustness in nonstationary environments, and standardized benchmarking protocols. Organizations should focus less on algorithm sophistication and more on market microstructure, regulatory constraints, and risk management in decision-making.

Suggested Citation

  • Mohammad Rezoanul Hoque & Md Meftahul Ferdaus & M. Kabir Hassan, 2025. "Reinforcement Learning in Financial Decision Making: A Systematic Review of Performance, Challenges, and Implementation Strategies," Papers 2512.10913, arXiv.org.
  • Handle: RePEc:arx:papers:2512.10913
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.10913
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.10913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.