IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.09337.html

Balancing Weights for Causal Mediation Analysis

Author

Listed:
  • Kentaro Kawato

Abstract

This paper develops methods for estimating the natural direct and indirect effects in causal mediation analysis. The efficient influence function-based estimator (EIF-based estimator) and the inverse probability weighting estimator (IPW estimator), which are standard in causal mediation analysis, both rely on the inverse of the estimated propensity scores, and thus they are vulnerable to two key issues (i) instability and (ii) finite-sample covariate imbalance. We propose estimators based on the weights obtained by an algorithm that directly penalizes weight dispersion while enforcing approximate covariate and mediator balance, thereby improving stability and mitigating bias in finite samples. We establish the convergence rates of the proposed weights and show that the resulting estimators are asymptotically normal and achieve the semiparametric efficiency bound. Monte Carlo simulations demonstrate that the proposed estimator outperforms not only the EIF-based estimator and the IPW estimator but also the regression imputation estimator in challenging scenarios with model misspecification. Furthermore, the proposed method is applied to a real dataset from a study examining the effects of media framing on immigration attitudes.

Suggested Citation

  • Kentaro Kawato, 2025. "Balancing Weights for Causal Mediation Analysis," Papers 2512.09337, arXiv.org.
  • Handle: RePEc:arx:papers:2512.09337
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.09337
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.09337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.