IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.09257.html
   My bibliography  Save this paper

Debiased Bayesian Inference for High-dimensional Regression Models

Author

Listed:
  • Qihui Chen
  • Zheng Fang
  • Ruixuan Liu

Abstract

There has been significant progress in Bayesian inference based on sparsity-inducing (e.g., spike-and-slab and horseshoe-type) priors for high-dimensional regression models. The resulting posteriors, however, in general do not possess desirable frequentist properties, and the credible sets thus cannot serve as valid confidence sets even asymptotically. We introduce a novel debiasing approach that corrects the bias for the entire Bayesian posterior distribution. We establish a new Bernstein-von Mises theorem that guarantees the frequentist validity of the debiased posterior. We demonstrate the practical performance of our proposal through Monte Carlo simulations and two empirical applications in economics.

Suggested Citation

  • Qihui Chen & Zheng Fang & Ruixuan Liu, 2025. "Debiased Bayesian Inference for High-dimensional Regression Models," Papers 2512.09257, arXiv.org.
  • Handle: RePEc:arx:papers:2512.09257
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.09257
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.09257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.