Author
Abstract
New methods are needed to monitor environmental treaties, like the Montreal Protocol, by reviewing large, complex customs datasets. This paper introduces a framework using unsupervised machine learning to systematically detect suspicious trade patterns and highlight activities for review. Our methodology, applied to 100,000 trade records, combines several ML techniques. Unsupervised Clustering (K-Means) discovers natural trade archetypes based on shipment value and weight. Anomaly Detection (Isolation Forest and IQR) identifies rare "mega-trades" and shipments with commercially unusual price-per-kilogram values. This is supplemented by Heuristic Flagging to find tactics like vague shipment descriptions. These layers are combined into a priority score, which successfully identified 1,351 price outliers and 1,288 high-priority shipments for customs review. A key finding is that high-priority commodities show a different and more valuable value-to-weight ratio than general goods. This was validated using Explainable AI (SHAP), which confirmed vague descriptions and high value as the most significant risk predictors. The model's sensitivity was validated by its detection of a massive spike in "mega-trades" in early 2021, correlating directly with the real-world regulatory impact of the US AIM Act. This work presents a repeatable unsupervised learning pipeline to turn raw trade data into prioritized, usable intelligence for regulatory groups.
Suggested Citation
Muhammad Sukri Bin Ramli, 2025.
"Pattern Recognition of Ozone-Depleting Substance Exports in Global Trade Data,"
Papers
2512.07864, arXiv.org.
Handle:
RePEc:arx:papers:2512.07864
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.07864. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.