IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.07162.html

DeepSVM: Learning Stochastic Volatility Models with Physics-Informed Deep Operator Networks

Author

Listed:
  • Kieran A. Malandain
  • Selim Kalici
  • Hakob Chakhoyan

Abstract

Real-time calibration of stochastic volatility models (SVMs) is computationally bottlenecked by the need to repeatedly solve coupled partial differential equations (PDEs). In this work, we propose DeepSVM, a physics-informed Deep Operator Network (PI-DeepONet) designed to learn the solution operator of the Heston model across its entire parameter space. Unlike standard data-driven deep learning (DL) approaches, DeepSVM requires no labelled training data. Rather, we employ a hard-constrained ansatz that enforces terminal payoffs and static no-arbitrage conditions by design. Furthermore, we use Residual-based Adaptive Refinement (RAR) to stabilize training in difficult regions subject to high gradients. Overall, DeepSVM achieves a final training loss of $10^{-5}$ and predicts highly accurate option prices across a range of typical market dynamics. While pricing accuracy is high, we find that the model's derivatives (Greeks) exhibit noise in the at-the-money (ATM) regime, highlighting the specific need for higher-order regularization in physics-informed operator learning.

Suggested Citation

  • Kieran A. Malandain & Selim Kalici & Hakob Chakhoyan, 2025. "DeepSVM: Learning Stochastic Volatility Models with Physics-Informed Deep Operator Networks," Papers 2512.07162, arXiv.org.
  • Handle: RePEc:arx:papers:2512.07162
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.07162
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.07162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.