IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.06033.html

Sell Data to AI Algorithms Without Revealing It: Secure Data Valuation and Sharing via Homomorphic Encryption

Author

Listed:
  • Michael Yang

    (Eric)

  • Ruijiang Gao

    (Eric)

  • Zhiqiang

    (Eric)

  • Zheng

Abstract

The rapid expansion of Artificial Intelligence is hindered by a fundamental friction in data markets: the value-privacy dilemma, where buyers cannot verify a dataset's utility without inspection, yet inspection may expose the data (Arrow's Information Paradox). We resolve this challenge by introducing the Trustworthy Influence Protocol (TIP), a privacy-preserving framework that enables prospective buyers to quantify the utility of external data without ever decrypting the raw assets. By integrating Homomorphic Encryption with gradient-based influence functions, our approach allows for the precise, blinded scoring of data points against a buyer's specific AI model. To ensure scalability for Large Language Models (LLMs), we employ low-rank gradient projections that reduce computational overhead while maintaining near-perfect fidelity to plaintext baselines, as demonstrated across BERT and GPT-2 architectures. Empirical simulations in healthcare and generative AI domains validate the framework's economic potential: we show that encrypted valuation signals achieve a high correlation with realized clinical utility and reveal a heavy-tailed distribution of data value in pre-training corpora where a minority of texts drive capability while the majority degrades it. These findings challenge prevailing flat-rate compensation models and offer a scalable technical foundation for a meritocratic, secure data economy.

Suggested Citation

  • Michael Yang & Ruijiang Gao & Zhiqiang & Zheng, 2025. "Sell Data to AI Algorithms Without Revealing It: Secure Data Valuation and Sharing via Homomorphic Encryption," Papers 2512.06033, arXiv.org.
  • Handle: RePEc:arx:papers:2512.06033
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.06033
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.06033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.