IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.05661.html
   My bibliography  Save this paper

Standard and stressed value at risk forecasting using dynamic Bayesian networks

Author

Listed:
  • Eden Gross
  • Ryan Kruger
  • Francois Toerien

Abstract

This study introduces a dynamic Bayesian network (DBN) framework for forecasting value at risk (VaR) and stressed VaR (SVaR) and compares its performance to several commonly applied models. Using daily S&P 500 index returns from 1991 to 2020, we produce 10-day 99% VaR and SVaR forecasts using a rolling period and historical returns for the traditional models, while three DBNs use both historical and forecasted returns. We evaluate the models' forecasting accuracy using standard backtests and forecasting error measures. Results show that autoregressive models deliver the most accurate VaR forecasts, while the DBNs achieve comparable performance to the historical simulation model, despite incorporating forward-looking return forecasts. For SVaR, all models produce highly conservative forecasts, with minimal breaches and limited differentiation in accuracy. While DBNs do not outperform traditional models, they demonstrate feasibility as a forward-looking approach to provide a foundation for future research on integrating causal inference into financial risk forecasting.

Suggested Citation

  • Eden Gross & Ryan Kruger & Francois Toerien, 2025. "Standard and stressed value at risk forecasting using dynamic Bayesian networks," Papers 2512.05661, arXiv.org.
  • Handle: RePEc:arx:papers:2512.05661
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.05661
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.05661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.