IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.03922.html

A Co-evolutionary Approach for Heston Calibration

Author

Listed:
  • Julian Gutierrez

Abstract

We evaluate a co-evolutionary calibration framework for the Heston model in which a genetic algorithm (GA) over parameters is coupled to an evolving neural inverse map from option surfaces to parameters. While GA-history sampling can reduce training loss quickly and yields strong in-sample fits to the target surface, learning-curve diagnostics show a widening train--validation gap across generations, indicating substantial overfitting induced by the concentrated and less diverse dataset. In contrast, a broad, space-filling dataset generated via Latin hypercube sampling (LHS) achieves nearly comparable calibration accuracy while delivering markedly better out-of-sample stability across held-out surfaces. These results suggest that apparent improvements from co-evolutionary data generation largely reflect target-specific specialization rather than a more reliable global inverse mapping, and that maintaining dataset diversity is critical for robust amortized calibration.

Suggested Citation

  • Julian Gutierrez, 2025. "A Co-evolutionary Approach for Heston Calibration," Papers 2512.03922, arXiv.org.
  • Handle: RePEc:arx:papers:2512.03922
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.03922
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.03922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.