IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.03524.html

Market share maximizing strategies of CAV fleet operators may cause chaos in our cities

Author

Listed:
  • Grzegorz Jamr'oz
  • Rafa{l} Kucharski
  • David Watling

Abstract

We study the dynamics and equilibria of a new kind of routing games, where players - drivers of future autonomous vehicles - may switch between individual (HDV) and collective (CAV) routing. In individual routing, just like today, drivers select routes minimizing expected travel costs, whereas in collective routing an operator centrally assigns vehicles to routes. The utility is then the average experienced travel time discounted with individually perceived attractiveness of automated driving. The market share maximising strategy amounts to offering utility greater than for individual routing to as many drivers as possible. Our theoretical contribution consists in developing a rigorous mathematical framework of individualized collective routing and studying algorithms which fleets of CAVs may use for their market-share optimization. We also define bi-level CAV - HDV equilibria and derive conditions which link the potential marketing behaviour of CAVs to the behavioural profile of the human population. Practically, we find that the fleet operator may often be able to equilibrate at full market share by simply mimicking the choices HDVs would make. In more realistic heterogenous human population settings, however, we discover that the market-share maximizing fleet controller should use highly variable mixed strategies as a means to attract or retain customers. The reason is that in mixed routing the powerful group player can control which vehicles are routed via congested and uncongested alternatives. The congestion pattern generated by CAVs is, however, not known to HDVs before departure and so HDVs cannot select faster routes and face huge uncertainty whichever alternative they choose. Consequently, mixed market-share maximising fleet strategies resulting in unpredictable day-to-day driving conditions may, alarmingly, become pervasive in our future cities.

Suggested Citation

  • Grzegorz Jamr'oz & Rafa{l} Kucharski & David Watling, 2025. "Market share maximizing strategies of CAV fleet operators may cause chaos in our cities," Papers 2512.03524, arXiv.org.
  • Handle: RePEc:arx:papers:2512.03524
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.03524
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.03524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.