IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.03107.html
   My bibliography  Save this paper

Detecting AI Hallucinations in Finance: An Information-Theoretic Method Cuts Hallucination Rate by 92%

Author

Listed:
  • Mainak Singha

Abstract

Large language models (LLMs) produce fluent but unsupported answers - hallucinations - limiting safe deployment in high-stakes domains. We propose ECLIPSE, a framework that treats hallucination as a mismatch between a model's semantic entropy and the capacity of available evidence. We combine entropy estimation via multi-sample clustering with a novel perplexity decomposition that measures how models use retrieved evidence. We prove that under mild conditions, the resulting entropy-capacity objective is strictly convex with a unique stable optimum. We evaluate on a controlled financial question answering dataset with GPT-3.5-turbo (n=200 balanced samples with synthetic hallucinations), where ECLIPSE achieves ROC AUC of 0.89 and average precision of 0.90, substantially outperforming a semantic entropy-only baseline (AUC 0.50). A controlled ablation with Claude-3-Haiku, which lacks token-level log probabilities, shows AUC dropping to 0.59 with coefficient magnitudes decreasing by 95% - demonstrating that ECLIPSE is a logprob-native mechanism whose effectiveness depends on calibrated token-level uncertainties. The perplexity decomposition features exhibit the largest learned coefficients, confirming that evidence utilization is central to hallucination detection. We position this work as a controlled mechanism study; broader validation across domains and naturally occurring hallucinations remains future work.

Suggested Citation

  • Mainak Singha, 2025. "Detecting AI Hallucinations in Finance: An Information-Theoretic Method Cuts Hallucination Rate by 92%," Papers 2512.03107, arXiv.org.
  • Handle: RePEc:arx:papers:2512.03107
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.03107
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.03107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.