IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.02200.html
   My bibliography  Save this paper

Modelling the Doughnut of social and planetary boundaries with frugal machine learning

Author

Listed:
  • Stefano Vrizzi
  • Daniel W. O'Neill

Abstract

The 'Doughnut' of social and planetary boundaries has emerged as a popular framework for assessing environmental and social sustainability. Here, we provide a proof-of-concept analysis that shows how machine learning (ML) methods can be applied to a simple macroeconomic model of the Doughnut. First, we show how ML methods can be used to find policy parameters that are consistent with 'living within the Doughnut'. Second, we show how a reinforcement learning agent can identify the optimal trajectory towards desired policies in the parameter space. The approaches we test, which include a Random Forest Classifier and $Q$-learning, are frugal ML methods that are able to find policy parameter combinations that achieve both environmental and social sustainability. The next step is the application of these methods to a more complex ecological macroeconomic model.

Suggested Citation

  • Stefano Vrizzi & Daniel W. O'Neill, 2025. "Modelling the Doughnut of social and planetary boundaries with frugal machine learning," Papers 2512.02200, arXiv.org, revised Dec 2025.
  • Handle: RePEc:arx:papers:2512.02200
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.02200
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.02200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.