IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.00448.html
   My bibliography  Save this paper

Efficient Calibration in the rough Bergomi model by Wasserstein distance

Author

Listed:
  • Changqing Teng
  • Guanglian Li

Abstract

Despite the empirical success in modeling volatility of the rough Bergomi (rBergomi) model, it suffers from pricing and calibration difficulties stemming from its non-Markovian structure. To address this, we propose a comprehensive computational framework that enhances both simulation and calibration. First, we develop a modified Sum-of-Exponentials (mSOE) Monte Carlo scheme which hybridizes an exact simulation of the singular kernel near the origin with a multi-factor approximation for the remainder. This method achieves high accuracy, particularly for out-of-the-money options, with an $\mathcal{O}(n)$ computational cost. Second, based on this efficient pricing engine, we then propose a distribution-matching calibration scheme by using Wasserstein distance as the optimization objective. This leverages a minimax formulation against Lipschitz payoffs, which effectively distributes pricing errors and improving robustness. Our numerical results confirm the mSOE scheme's convergence and demonstrate that the calibration algorithm reliably identifies model parameters and generalizes well to path-dependent options, which offers a powerful and generic tool for practical model fitting.

Suggested Citation

  • Changqing Teng & Guanglian Li, 2025. "Efficient Calibration in the rough Bergomi model by Wasserstein distance," Papers 2512.00448, arXiv.org.
  • Handle: RePEc:arx:papers:2512.00448
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.00448
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.00448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.