Author
Abstract
Macroeconomic nowcasting sits at the intersection of traditional econometrics, data-rich information systems, and AI applications in business, economics, and policy. Machine learning (ML) methods are increasingly used to nowcast quarterly GDP growth, but adoption in high-stakes settings requires that predictive accuracy be matched by interpretability and robust uncertainty quantification. This article reviews recent developments in macroeconomic nowcasting and compares econometric benchmarks with ML approaches in data-rich and shock-prone environments, emphasizing the use of nowcasts as decision inputs rather than as mere error-minimization exercises. The discussion is organized along three axes. First, we contrast penalized regressions, dimension-reduction techniques, tree ensembles, and neural networks with autoregressive models, Dynamic Factor Models, and Random Walks, emphasizing how each family handles small samples, collinearity, mixed frequencies, and regime shifts. Second, we examine explainability tools (intrinsic measures and model-agnostic XAI methods), focusing on temporal stability, sign coherence, and their ability to sustain credible economic narratives and nowcast revisions. Third, we analyze non-parametric uncertainty quantification via block bootstrapping for predictive intervals and confidence bands on feature importance under serial dependence and ragged edge. We translate these elements into a reference workflow for "decision-grade" nowcasting systems, including vintage management, time-aware validation, and automated reliability audits, and we outline a research agenda on regime-dependent model comparison, bootstrap design for latent components, and temporal stability of explanations. Explainable ML and uncertainty quantification emerge as structural components of a responsible forecasting pipeline, not optional refinements.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.00399. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.