IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.23057.html
   My bibliography  Save this paper

Standard Occupation Classifier -- A Natural Language Processing Approach

Author

Listed:
  • Sidharth Rony
  • Jack Patman

Abstract

Standard Occupational Classifiers (SOC) are systems used to categorize and classify different types of jobs and occupations based on their similarities in terms of job duties, skills, and qualifications. Integrating these facets with Big Data from job advertisement offers the prospect to investigate labour demand that is specific to various occupations. This project investigates the use of recent developments in natural language processing to construct a classifier capable of assigning an occupation code to a given job advertisement. We develop various classifiers for both UK ONS SOC and US O*NET SOC, using different Language Models. We find that an ensemble model, which combines Google BERT and a Neural Network classifier while considering job title, description, and skills, achieved the highest prediction accuracy. Specifically, the ensemble model exhibited a classification accuracy of up to 61% for the lower (or fourth) tier of SOC, and 72% for the third tier of SOC. This model could provide up to date, accurate information on the evolution of the labour market using job advertisements.

Suggested Citation

  • Sidharth Rony & Jack Patman, 2025. "Standard Occupation Classifier -- A Natural Language Processing Approach," Papers 2511.23057, arXiv.org.
  • Handle: RePEc:arx:papers:2511.23057
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.23057
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.23057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.