IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.22314.html
   My bibliography  Save this paper

DeXposure: A Dataset and Benchmarks for Inter-protocol Credit Exposure in Decentralized Financial Networks

Author

Listed:
  • Wenbin Wu
  • Kejiang Qian
  • Alexis Lui
  • Christopher Jack
  • Yue Wu
  • Peter McBurney
  • Fengxiang He
  • Bryan Zhang

Abstract

We curate the DeXposure dataset, the first large-scale dataset for inter-protocol credit exposure in decentralized financial networks, covering global markets of 43.7 million entries across 4.3 thousand protocols, 602 blockchains, and 24.3 thousand tokens, from 2020 to 2025. A new measure, value-linked credit exposure between protocols, is defined as the inferred financial dependency relationships derived from changes in Total Value Locked (TVL). We develop a token-to-protocol model using DefiLlama metadata to infer inter-protocol credit exposure from the token's stock dynamics, as reported by the protocols. Based on the curated dataset, we develop three benchmarks for machine learning research with financial applications: (1) graph clustering for global network measurement, tracking the structural evolution of credit exposure networks, (2) vector autoregression for sector-level credit exposure dynamics during major shocks (Terra and FTX), and (3) temporal graph neural networks for dynamic link prediction on temporal graphs. From the analysis, we observe (1) a rapid growth of network volume, (2) a trend of concentration to key protocols, (3) a decline of network density (the ratio of actual connections to possible connections), and (4) distinct shock propagation across sectors, such as lending platforms, trading exchanges, and asset management protocols. The DeXposure dataset and code have been released publicly. We envision they will help with research and practice in machine learning as well as financial risk monitoring, policy analysis, DeFi market modeling, amongst others. The dataset also contributes to machine learning research by offering benchmarks for graph clustering, vector autoregression, and temporal graph analysis.

Suggested Citation

  • Wenbin Wu & Kejiang Qian & Alexis Lui & Christopher Jack & Yue Wu & Peter McBurney & Fengxiang He & Bryan Zhang, 2025. "DeXposure: A Dataset and Benchmarks for Inter-protocol Credit Exposure in Decentralized Financial Networks," Papers 2511.22314, arXiv.org.
  • Handle: RePEc:arx:papers:2511.22314
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.22314
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.22314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.