IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.21988.html
   My bibliography  Save this paper

Generalized method of moments with partially missing data

Author

Listed:
  • Grigory Franguridi
  • Hyungsik Roger Moon

Abstract

We consider a generalized method of moments framework in which a part of the data vector is missing for some units in a completely unrestricted, potentially endogenous way. In this setup, the parameters of interest are usually only partially identified. We characterize the identified set for such parameters using the support function of the convex set of moment predictions consistent with the data. This identified set is sharp, valid for both continuous and discrete data, and straightforward to estimate. We also propose a statistic for testing hypotheses and constructing confidence regions for the true parameter, show that standard nonparametric bootstrap may not be valid, and suggest a fix using the bootstrap for directionally differentiable functionals of Fang and Santos (2019). A set of Monte Carlo simulations demonstrates that both our estimator and the confidence region perform well when samples are moderately large and the data have bounded supports.

Suggested Citation

  • Grigory Franguridi & Hyungsik Roger Moon, 2025. "Generalized method of moments with partially missing data," Papers 2511.21988, arXiv.org.
  • Handle: RePEc:arx:papers:2511.21988
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.21988
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.21988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.