IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.21901.html
   My bibliography  Save this paper

Standardized Threat Taxonomy for AI Security, Governance, and Regulatory Compliance

Author

Listed:
  • Hernan Huwyler

Abstract

The accelerating deployment of artificial intelligence systems across regulated sectors has exposed critical fragmentation in risk assessment methodologies. A significant "language barrier" currently separates technical security teams, who focus on algorithmic vulnerabilities (e.g., MITRE ATLAS), from legal and compliance professionals, who address regulatory mandates (e.g., EU AI Act, NIST AI RMF). This disciplinary disconnect prevents the accurate translation of technical vulnerabilities into financial liability, leaving practitioners unable to answer fundamental economic questions regarding contingency reserves, control return-on-investment, and insurance exposure. To bridge this gap, this research presents the AI System Threat Vector Taxonomy, a structured ontology designed explicitly for Quantitative Risk Assessment (QRA). The framework categorizes AI-specific risks into nine critical domains: Misuse, Poisoning, Privacy, Adversarial, Biases, Unreliable Outputs, Drift, Supply Chain, and IP Threat, integrating 53 operationally defined sub-threats. Uniquely, each domain maps technical vectors directly to business loss categories (Confidentiality, Integrity, Availability, Legal, Reputation), enabling the translation of abstract threats into measurable financial impact. The taxonomy is empirically validated through an analysis of 133 documented AI incidents from 2025 (achieving 100% classification coverage) and reconciled against the main AI risk frameworks. Furthermore, it is explicitly aligned with ISO/IEC 42001 controls and NIST AI RMF functions to facilitate auditability.

Suggested Citation

  • Hernan Huwyler, 2025. "Standardized Threat Taxonomy for AI Security, Governance, and Regulatory Compliance," Papers 2511.21901, arXiv.org.
  • Handle: RePEc:arx:papers:2511.21901
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.21901
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.21901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.