IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.15734.html
   My bibliography  Save this paper

Sovereign AI: Rethinking Autonomy in the Age of Global Interdependence

Author

Listed:
  • Shalabh Kumar Singh
  • Shubhashis Sengupta

Abstract

Artificial intelligence (AI) is emerging as a foundational general-purpose technology, raising new dilemmas of sovereignty in an interconnected world. While governments seek greater control over it, the very foundations of AI--global data pipelines, semiconductor supply chains, open-source ecosystems, and international standards--resist enclosure. This paper develops a conceptual and formal framework for understanding sovereign AI as a continuum rather than a binary condition, balancing autonomy with interdependence. Drawing on classical theories, historical analogies, and contemporary debates on networked autonomy, we present a planner's model that identifies two policy heuristics: equalizing marginal returns across the four sovereignty pillars and setting openness where global benefits equal exposure risks. We apply the model to India, highlighting sovereign footholds in data, compute, and norms but weaker model autonomy. The near-term challenge is integration via coupled Data x Compute investment, lifecycle governance (ModelOps), and safeguarded procurement. We then apply the model to the Middle East (Saudi Arabia and the UAE), where large public investment in Arabic-first models and sovereign cloud implies high sovereignty weights, lower effective fiscal constraints, and strong Data x Compute complementarities. An interior openness setting with guardrails emerges as optimal. Across contexts, the lesson is that sovereignty in AI needs managed interdependence, not isolation.

Suggested Citation

  • Shalabh Kumar Singh & Shubhashis Sengupta, 2025. "Sovereign AI: Rethinking Autonomy in the Age of Global Interdependence," Papers 2511.15734, arXiv.org.
  • Handle: RePEc:arx:papers:2511.15734
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.15734
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.15734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.