IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.08638.html
   My bibliography  Save this paper

Pattern Recognition of Scrap Plastic Misclassification in Global Trade Data

Author

Listed:
  • Muhammad Sukri Bin Ramli

Abstract

We propose an interpretable machine learning framework to help identify trade data discrepancies that are challenging to detect with traditional methods. Our system analyzes trade data to find a novel inverse price-volume signature, a pattern where reported volumes increase as average unit prices decrease. The model achieves 0.9375 accuracy and was validated by comparing large-scale UN data with detailed firm-level data, confirming that the risk signatures are consistent. This scalable tool provides customs authorities with a transparent, data-driven method to shift from conventional to priority-based inspection protocols, translating complex data into actionable intelligence to support international environmental policies.

Suggested Citation

  • Muhammad Sukri Bin Ramli, 2025. "Pattern Recognition of Scrap Plastic Misclassification in Global Trade Data," Papers 2511.08638, arXiv.org.
  • Handle: RePEc:arx:papers:2511.08638
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.08638
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.08638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.