IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.08347.html
   My bibliography  Save this paper

Classification in Equilibrium: Structure of Optimal Decision Rules

Author

Listed:
  • Elizabeth Maggie Penn
  • John W. Patty

Abstract

This paper characterizes optimal classification when individuals adjust their behavior in response to the classification rule. We model the interaction between a designer and a population as a Stackelberg game: the designer selects a classification rule anticipating how individuals will comply, cheat, or abstain in order to obtain a favorable classification. Under standard monotone likelihood ratio assumptions, and for a general set of classification objectives, optimal rules belong to a small and interpretable family--single-threshold and two-cut rules--that encompass both conventional and counterintuitive designs. Our results depart sharply from prior findings that optimal classifiers reward higher signals. In equilibrium, global accuracy can be maximized by rewarding those with lower likelihood ratios or by concentrating rewards or penalties in a middle band to improve informational quality. We further characterize classification objectives that rule out socially harmful equilibria that disincentivize compliance for some populations.

Suggested Citation

  • Elizabeth Maggie Penn & John W. Patty, 2025. "Classification in Equilibrium: Structure of Optimal Decision Rules," Papers 2511.08347, arXiv.org, revised Dec 2025.
  • Handle: RePEc:arx:papers:2511.08347
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.08347
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.08347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.