IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.08347.html

Classification in Equilibrium: Structure of Optimal Decision Rules

Author

Listed:
  • Elizabeth Maggie Penn
  • John W. Patty

Abstract

This paper characterizes optimal classification when individuals adjust their behavior in response to the classification rule. We model the interaction between a designer and a population as a Stackelberg game: the designer selects a classification rule anticipating how individuals will comply, cheat, or abstain in order to obtain a favorable classification. Under standard monotone likelihood ratio assumptions, and for a general set of classification objectives, optimal rules belong to a small and interpretable family--single-threshold and two-cut rules--that encompass both conventional and counterintuitive designs. Our results depart sharply from prior findings that optimal classifiers reward higher signals. In equilibrium, global accuracy can be maximized by rewarding those with lower likelihood ratios or by concentrating rewards or penalties in a middle band to improve informational quality. We further characterize classification objectives that rule out socially harmful equilibria that disincentivize compliance for some populations.

Suggested Citation

  • Elizabeth Maggie Penn & John W. Patty, 2025. "Classification in Equilibrium: Structure of Optimal Decision Rules," Papers 2511.08347, arXiv.org, revised Jan 2026.
  • Handle: RePEc:arx:papers:2511.08347
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.08347
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elizabeth Maggie Penn, 2025. "Optimal classification with endogenous behavior," Papers 2504.06127, arXiv.org, revised May 2025.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      NEP fields

      This paper has been announced in the following NEP Reports:

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.08347. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.