IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.06224.html
   My bibliography  Save this paper

Bitcoin Forecasting with Classical Time Series Models on Prices and Volatility

Author

Listed:
  • Anmar Kareem
  • Alexander Aue

Abstract

This paper evaluates the performance of classical time series models in forecasting Bitcoin prices, focusing on ARIMA, SARIMA, GARCH, and EGARCH. Daily price data from 2010 to 2020 were analyzed, with models trained on the first 90 percent and tested on the final 10 percent. Forecast accuracy was assessed using MAE, RMSE, AIC, and BIC. The results show that ARIMA provided the strongest forecasts for short-run log-price dynamics, while EGARCH offered the best fit for volatility by capturing asymmetry in responses to shocks. These findings suggest that despite Bitcoin's extreme volatility, classical time series models remain valuable for short-run forecasting. The study contributes to understanding cryptocurrency predictability and sets the stage for future work integrating machine learning and macroeconomic variables.

Suggested Citation

  • Anmar Kareem & Alexander Aue, 2025. "Bitcoin Forecasting with Classical Time Series Models on Prices and Volatility," Papers 2511.06224, arXiv.org.
  • Handle: RePEc:arx:papers:2511.06224
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.06224
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.06224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.