Author
Listed:
- Mohammad Rashed Albous
- Melodena Stephens
- Odeh Rashed Al-Jayyousi
Abstract
The rapid expansion of artificial intelligence (AI) in the Gulf Cooperation Council (GCC) raises a central question: are investments in compute infrastructure matched by an equally robust build-out of skills, incentives, and governance? Grounded in socio-technical systems (STS) theory, this mixed-methods study audits workforce preparedness across Kingdom of Saudi Arabia (KSA), the United Arab Emirates (UAE), Qatar, Kuwait, Bahrain, and Oman. We combine term frequency--inverse document frequency (TF--IDF) analysis of six national AI strategies (NASs), an inventory of 47 publicly disclosed AI initiatives (January 2017--April 2025), paired case studies, the Mohamed bin Zayed University of Artificial Intelligence (MBZUAI) and the Saudi Data & Artificial Intelligence Authority (SDAIA) Academy, and a scenario matrix linking oil-revenue slack (technical capacity) to regulatory coherence (social alignment). Across the corpus, 34/47 initiatives (0.72; 95% Wilson CI 0.58--0.83) exhibit joint social--technical design; country-level indices span 0.57--0.90 (small n; intervals overlap). Scenario results suggest that, under our modeled conditions, regulatory convergence plausibly binds outcomes more than fiscal capacity: fragmented rules can offset high oil revenues, while harmonized standards help preserve progress under austerity. We also identify an emerging two-track talent system, research elites versus rapidly trained practitioners, that risks labor-market bifurcation without bridging mechanisms. By extending STS inquiry to oil-rich, state-led economies, the study refines theory and sets a research agenda focused on longitudinal coupling metrics, ethnographies of coordination, and outcome-based performance indicators.
Suggested Citation
Mohammad Rashed Albous & Melodena Stephens & Odeh Rashed Al-Jayyousi, 2025.
"Artificial intelligence and the Gulf Cooperation Council workforce adapting to the future of work,"
Papers
2511.05927, arXiv.org.
Handle:
RePEc:arx:papers:2511.05927
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.05927. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.