IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.02792.html
   My bibliography  Save this paper

The Bias-Variance Tradeoff in Long-Term Experimentation

Author

Listed:
  • Daniel Ting
  • Kenneth Hung

Abstract

As we exhaust methods that reduces variance without introducing bias, reducing variance in experiments often requires accepting some bias, using methods like winsorization or surrogate metrics. While this bias-variance tradeoff can be optimized for individual experiments, bias may accumulate over time, raising concerns for long-term optimization. We analyze whether bias is ever acceptable when it can accumulate, and show that a bias-variance tradeoff persists in long-term settings. Improving signal-to-noise remains beneficial, even if it introduces bias. This implies we should shift from thinking there is a single ``correct'', unbiased metric to thinking about how to make the best estimates and decisions when better precision can be achieved at the expense of bias. Furthermore, our model adds nuance to previous findings that suggest less stringent launch criterion leads to improved gains. We show while this is beneficial when the system is far from the optimum, more stringent launch criterion is preferable as the system matures.

Suggested Citation

  • Daniel Ting & Kenneth Hung, 2025. "The Bias-Variance Tradeoff in Long-Term Experimentation," Papers 2511.02792, arXiv.org.
  • Handle: RePEc:arx:papers:2511.02792
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.02792
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.02792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.