IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.15839.html
   My bibliography  Save this paper

Learning Correlated Reward Models: Statistical Barriers and Opportunities

Author

Listed:
  • Yeshwanth Cherapanamjeri
  • Constantinos Daskalakis
  • Gabriele Farina
  • Sobhan Mohammadpour

Abstract

Random Utility Models (RUMs) are a classical framework for modeling user preferences and play a key role in reward modeling for Reinforcement Learning from Human Feedback (RLHF). However, a crucial shortcoming of many of these techniques is the Independence of Irrelevant Alternatives (IIA) assumption, which collapses \emph{all} human preferences to a universal underlying utility function, yielding a coarse approximation of the range of human preferences. On the other hand, statistical and computational guarantees for models avoiding this assumption are scarce. In this paper, we investigate the statistical and computational challenges of learning a \emph{correlated} probit model, a fundamental RUM that avoids the IIA assumption. First, we establish that the classical data collection paradigm of pairwise preference data is \emph{fundamentally insufficient} to learn correlational information, explaining the lack of statistical and computational guarantees in this setting. Next, we demonstrate that \emph{best-of-three} preference data provably overcomes these shortcomings, and devise a statistically and computationally efficient estimator with near-optimal performance. These results highlight the benefits of higher-order preference data in learning correlated utilities, allowing for more fine-grained modeling of human preferences. Finally, we validate these theoretical guarantees on several real-world datasets, demonstrating improved personalization of human preferences.

Suggested Citation

  • Yeshwanth Cherapanamjeri & Constantinos Daskalakis & Gabriele Farina & Sobhan Mohammadpour, 2025. "Learning Correlated Reward Models: Statistical Barriers and Opportunities," Papers 2510.15839, arXiv.org.
  • Handle: RePEc:arx:papers:2510.15839
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.15839
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.15839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.