IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.15839.html
   My bibliography  Save this paper

Learning Correlated Reward Models: Statistical Barriers and Opportunities

Author

Listed:
  • Yeshwanth Cherapanamjeri
  • Constantinos Daskalakis
  • Gabriele Farina
  • Sobhan Mohammadpour

Abstract

Random Utility Models (RUMs) are a classical framework for modeling user preferences and play a key role in reward modeling for Reinforcement Learning from Human Feedback (RLHF). However, a crucial shortcoming of many of these techniques is the Independence of Irrelevant Alternatives (IIA) assumption, which collapses \emph{all} human preferences to a universal underlying utility function, yielding a coarse approximation of the range of human preferences. On the other hand, statistical and computational guarantees for models avoiding this assumption are scarce. In this paper, we investigate the statistical and computational challenges of learning a \emph{correlated} probit model, a fundamental RUM that avoids the IIA assumption. First, we establish that the classical data collection paradigm of pairwise preference data is \emph{fundamentally insufficient} to learn correlational information, explaining the lack of statistical and computational guarantees in this setting. Next, we demonstrate that \emph{best-of-three} preference data provably overcomes these shortcomings, and devise a statistically and computationally efficient estimator with near-optimal performance. These results highlight the benefits of higher-order preference data in learning correlated utilities, allowing for more fine-grained modeling of human preferences. Finally, we validate these theoretical guarantees on several real-world datasets, demonstrating improved personalization of human preferences.

Suggested Citation

  • Yeshwanth Cherapanamjeri & Constantinos Daskalakis & Gabriele Farina & Sobhan Mohammadpour, 2025. "Learning Correlated Reward Models: Statistical Barriers and Opportunities," Papers 2510.15839, arXiv.org.
  • Handle: RePEc:arx:papers:2510.15839
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.15839
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bunch, David S. & Kitamura, Ryuichi, 1991. "Probit Model Estimation Revisited: Trinomial Models of Household Car Ownership," University of California Transportation Center, Working Papers qt2hr8d4bs, University of California Transportation Center.
    2. Carolina Osorio & Bilge Atasoy, 2021. "Efficient Simulation-Based Toll Optimization for Large-Scale Networks," Transportation Science, INFORMS, vol. 55(5), pages 1010-1024, September.
    3. Wagner A. Kamakura, 1989. "The Estimation of Multinomial Probit Models: A New Calibration Algorithm," Transportation Science, INFORMS, vol. 23(4), pages 253-265, November.
    4. Keji Wei & Vikrant Vaze & Alexandre Jacquillat, 2022. "Transit Planning Optimization Under Ride-Hailing Competition and Traffic Congestion," Transportation Science, INFORMS, vol. 56(3), pages 725-749, May.
    5. McFadden, Daniel, 1980. "Econometric Models for Probabilistic Choice among Products," The Journal of Business, University of Chicago Press, vol. 53(3), pages 13-29, July.
    6. Josef Hofbauer & William H. Sandholm, 2002. "On the Global Convergence of Stochastic Fictitious Play," Econometrica, Econometric Society, vol. 70(6), pages 2265-2294, November.
    7. Keji Wei & Vikrant Vaze, 2020. "Airline Timetable Development and Fleet Assignment Incorporating Passenger Choice," Transportation Science, INFORMS, vol. 54(1), pages 139-163, January.
    8. Natarajan, Ranjini & McCulloch, Charles E. & Kiefer, Nicholas M., 2000. "A Monte Carlo EM method for estimating multinomial probit models," Computational Statistics & Data Analysis, Elsevier, vol. 34(1), pages 33-50, July.
    9. Guiyun Feng & Xiaobo Li & Zizhuo Wang, 2017. "Technical Note—On the Relation Between Several Discrete Choice Models," Operations Research, INFORMS, vol. 65(6), pages 1516-1525, December.
    10. Anderson, Simon Peter & de Palma, Andre & Thisse, Jacques-Francois, 1988. "A Representative Consumer Theory of the Logit Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 29(3), pages 461-466, August.
    11. Charles E. Clark, 1961. "The Greatest of a Finite Set of Random Variables," Operations Research, INFORMS, vol. 9(2), pages 145-162, April.
    12. Patrick Ding & Guido Imbens & Zhaonan Qu & Yinyu Ye, 2024. "Computationally Efficient Estimation of Large Probit Models," Papers 2407.09371, arXiv.org, revised Sep 2024.
    13. Sørensen, Jesper R.-V. & Fosgerau, Mogens, 2022. "How McFadden met Rockafellar and learned to do more with less," Journal of Mathematical Economics, Elsevier, vol. 100(C).
    14. Guillermo Gallego & Ruxian Wang, 2014. "Multiproduct Price Optimization and Competition Under the Nested Logit Model with Product-Differentiated Price Sensitivities," Operations Research, INFORMS, vol. 62(2), pages 450-461, April.
    15. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    16. Steven Lamontagne & Margarida Carvalho & Emma Frejinger & Bernard Gendron & Miguel F. Anjos & Ribal Atallah, 2023. "Optimising Electric Vehicle Charging Station Placement Using Advanced Discrete Choice Models," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1195-1213, September.
    17. Bunch, David S., 1991. "Estimability in the Multinomial Probit Model," University of California Transportation Center, Working Papers qt1gf1t128, University of California Transportation Center.
    18. Bunch, David S., 1991. "Estimability in the multinomial probit model," Transportation Research Part B: Methodological, Elsevier, vol. 25(1), pages 1-12, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    2. Rinus Haaijer & Michel Wedel & Marco Vriens & Tom Wansbeek, 1998. "Utility Covariances and Context Effects in Conjoint MNP Models," Marketing Science, INFORMS, vol. 17(3), pages 236-252.
    3. Qi Feng & J. George Shanthikumar & Mengying Xue, 2022. "Consumer Choice Models and Estimation: A Review and Extension," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 847-867, February.
    4. Zhenzhen Yan & Karthik Natarajan & Chung Piaw Teo & Cong Cheng, 2022. "A Representative Consumer Model in Data-Driven Multiproduct Pricing Optimization," Management Science, INFORMS, vol. 68(8), pages 5798-5827, August.
    5. Ruxian Wang & Zizhuo Wang, 2017. "Consumer Choice Models with Endogenous Network Effects," Management Science, INFORMS, vol. 63(11), pages 3944-3960, November.
    6. Emerson Melo, 2021. "Learning in Random Utility Models Via Online Decision Problems," Papers 2112.10993, arXiv.org, revised Aug 2022.
    7. Mogens Fosgerau & Emerson Melo & André de Palma & Matthew Shum, 2020. "Discrete Choice And Rational Inattention: A General Equivalence Result," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 61(4), pages 1569-1589, November.
    8. Fok, Dennis & Paap, Richard, 2025. "New misspecification tests for multinomial logit models," Journal of choice modelling, Elsevier, vol. 54(C).
    9. Joan L. Walker & Moshe Ben-Akiva & Denis Bolduc, 2007. "Identification of parameters in normal error component logit-mixture (NECLM) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(6), pages 1095-1125.
    10. Cohen, Michael, 2010. "A Structured Covariance Probit Demand Model," Research Reports 149970, University of Connecticut, Food Marketing Policy Center.
    11. Patrick Ding & Guido Imbens & Zhaonan Qu & Yinyu Ye, 2024. "Computationally Efficient Estimation of Large Probit Models," Papers 2407.09371, arXiv.org, revised Sep 2024.
    12. Joachim Grammig & Reinhard Hujer & Michael Scheidler, 2005. "Discrete choice modelling in airline network management," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(4), pages 467-486, May.
    13. Yanqiu Ruan & Xiaobo Li & Karthyek Murthy & Karthik Natarajan, 2022. "A Nonparametric Approach with Marginals for Modeling Consumer Choice," Papers 2208.06115, arXiv.org, revised Apr 2025.
    14. Victoria Prowse, 2012. "Modeling Employment Dynamics With State Dependence and Unobserved Heterogeneity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 411-431, April.
    15. Tinessa, Fiore, 2021. "Closed-form random utility models with mixture distributions of random utilities: Exploring finite mixtures of qGEV models," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 262-288.
    16. Chiara Monfardini & Joao Santos Silva, 2008. "What can we learn about correlations from multinomial probit estimates?," Economics Bulletin, AccessEcon, vol. 3(28), pages 1-9.
    17. Bolduc, Denis & Khalaf, Lynda & Moyneur, Érick, 2008. "Identification-robust simulation-based inference in joint discrete/continuous models for energy markets," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3148-3161, February.
    18. Daziano, Ricardo A. & Achtnicht, Martin, 2012. "Forecasting adoption of ultra-low-emission vehicles using the GHK simulator and Bayes estimates of a multinomial probit model," ZEW Discussion Papers 12-017, ZEW - Leibniz Centre for European Economic Research.
    19. Nirmale, Sangram Krishna & Pinjari, Abdul Rawoof, 2023. "Discrete choice models with multiplicative stochasticity in choice environment variables: Application to accommodating perception errors in driver behaviour models," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 169-193.
    20. Ziegler Andreas, 2010. "Z-Tests in Multinomial Probit Models under Simulated Maximum Likelihood Estimation: Some Small Sample Properties," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 230(5), pages 630-652, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.15839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.