IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.12262.html
   My bibliography  Save this paper

Optimal break tests for large linear time series models

Author

Listed:
  • Abhimanyu Gupta
  • Myung Hwan Seo

Abstract

We develop a class of optimal tests for a structural break occurring at an unknown date in infinite and growing-order time series regression models, such as AR($\infty$), linear regression with increasingly many covariates, and nonparametric regression. Under an auxiliary i.i.d. Gaussian error assumption, we derive an average power optimal test, establishing a growing-dimensional analog of the exponential tests of Andrews and Ploberger (1994) to handle identification failure under the null hypothesis of no break. Relaxing the i.i.d. Gaussian assumption to a more general dependence structure, we establish a functional central limit theorem for the underlying stochastic processes, which features an extra high-order serial dependence term due to the growing dimension. We robustify our test both against this term and finite sample bias and illustrate its excellent performance and practical relevance in a Monte Carlo study and a real data empirical example.

Suggested Citation

  • Abhimanyu Gupta & Myung Hwan Seo, 2025. "Optimal break tests for large linear time series models," Papers 2510.12262, arXiv.org.
  • Handle: RePEc:arx:papers:2510.12262
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.12262
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.12262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.