IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.11616.html
   My bibliography  Save this paper

Attention Factors for Statistical Arbitrage

Author

Listed:
  • Elliot L. Epstein
  • Rose Wang
  • Jaewon Choi
  • Markus Pelger

Abstract

Statistical arbitrage exploits temporal price differences between similar assets. We develop a framework to jointly identify similar assets through factors, identify mispricing and form a trading policy that maximizes risk-adjusted performance after trading costs. Our Attention Factors are conditional latent factors that are the most useful for arbitrage trading. They are learned from firm characteristic embeddings that allow for complex interactions. We identify time-series signals from the residual portfolios of our factors with a general sequence model. Estimating factors and the arbitrage trading strategy jointly is crucial to maximize profitability after trading costs. In a comprehensive empirical study we show that our Attention Factor model achieves an out-of-sample Sharpe ratio above 4 on the largest U.S. equities over a 24-year period. Our one-step solution yields an unprecedented Sharpe ratio of 2.3 net of transaction costs. We show that weak factors are important for arbitrage trading.

Suggested Citation

  • Elliot L. Epstein & Rose Wang & Jaewon Choi & Markus Pelger, 2025. "Attention Factors for Statistical Arbitrage," Papers 2510.11616, arXiv.org.
  • Handle: RePEc:arx:papers:2510.11616
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.11616
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.11616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.