Author
Abstract
Motivated by Heisenberg's observable-only stance, we replace latent "information" (filtrations, hidden diffusions, state variables) with observable transitions between price states. On a discrete price lattice with a Hilbert-space representation, shift operators and the spectral calculus of the price define observable frequency operators and a translation-invariant convolution generator. Combined with jump operators that encode transition intensities, this yields a completely positive, translation-covariant Lindblad semigroup. Under the risk-neutral condition the framework leads to a nonlocal pricing equation that is diagonal in Fourier space; in the small-mesh diffusive limit its generator converges to the classical Black-Scholes-Merton operator. We do not propose another parametric model. We propose a foundation for model construction that is observable, first-principles, and mathematically natural. Noncommutativity emerges from the observable shift algebra rather than being postulated. The jump-intensity ledger determines tail behavior and short-maturity smiles and implies testable links between extreme-event probabilities and implied-volatility wings. Future directions: (i) multi-asset systems on higher-dimensional lattices with vector shifts and block kernels; (ii) state- or flow-dependent kernels as "financial interactions" leading to nonlinear master equations while preserving linear risk-neutral pricing; (iii) empirical tests of the predicted scaling relations between jump intensities and market extremes.
Suggested Citation
Tian Xin, 2025.
"Quantum-Theoretical Re-interpretation of Pricing Theory,"
Papers
2510.06287, arXiv.org.
Handle:
RePEc:arx:papers:2510.06287
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.06287. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.