IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.03979.html
   My bibliography  Save this paper

Beyond Softmax: A New Perspective on Gradient Bandits

Author

Listed:
  • Emerson Melo
  • David Muller

Abstract

We establish a link between a class of discrete choice models and the theory of online learning and multi-armed bandits. Our contributions are: (i) sublinear regret bounds for a broad algorithmic family, encompassing Exp3 as a special case; (ii) a new class of adversarial bandit algorithms derived from generalized nested logit models \citep{wen:2001}; and (iii) \textcolor{black}{we introduce a novel class of generalized gradient bandit algorithms that extends beyond the widely used softmax formulation. By relaxing the restrictive independence assumptions inherent in softmax, our framework accommodates correlated learning dynamics across actions, thereby broadening the applicability of gradient bandit methods.} Overall, the proposed algorithms combine flexible model specification with computational efficiency via closed-form sampling probabilities. Numerical experiments in stochastic bandit settings demonstrate their practical effectiveness.

Suggested Citation

  • Emerson Melo & David Muller, 2025. "Beyond Softmax: A New Perspective on Gradient Bandits," Papers 2510.03979, arXiv.org.
  • Handle: RePEc:arx:papers:2510.03979
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.03979
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Josef Hofbauer & William H. Sandholm, 2002. "On the Global Convergence of Stochastic Fictitious Play," Econometrica, Econometric Society, vol. 70(6), pages 2265-2294, November.
    2. Omar Besbes & Assaf Zeevi, 2009. "Dynamic Pricing Without Knowing the Demand Function: Risk Bounds and Near-Optimal Algorithms," Operations Research, INFORMS, vol. 57(6), pages 1407-1420, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippe Jehiel & Aviman Satpathy, 2024. "Learning to be Indifferent in Complex Decisions: A Coarse Payoff-Assessment Model," Papers 2412.09321, arXiv.org, revised Dec 2024.
    2. Jianyu Xu & Yining Wang & Xi Chen & Yu-Xiang Wang, 2025. "Dynamic Pricing with Adversarially-Censored Demands," Papers 2502.06168, arXiv.org.
    3. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    4. Zhang, Boyu & Hofbauer, Josef, 2016. "Quantal response methods for equilibrium selection in 2×2 coordination games," Games and Economic Behavior, Elsevier, vol. 97(C), pages 19-31.
    5. William L. Cooper & Tito Homem-de-Mello & Anton J. Kleywegt, 2015. "Learning and Pricing with Models That Do Not Explicitly Incorporate Competition," Operations Research, INFORMS, vol. 63(1), pages 86-103, February.
    6. , & , & ,, 2008. "Monotone methods for equilibrium selection under perfect foresight dynamics," Theoretical Economics, Econometric Society, vol. 3(2), June.
    7. Yiwei Chen & Vivek F. Farias, 2013. "Simple Policies for Dynamic Pricing with Imperfect Forecasts," Operations Research, INFORMS, vol. 61(3), pages 612-624, June.
    8. Kirill Safonov, 2024. "Neural Network Approach to Demand Estimation and Dynamic Pricing in Retail," Papers 2412.00920, arXiv.org, revised Dec 2024.
    9. Tsakas, Elias & Voorneveld, Mark, 2009. "The target projection dynamic," Games and Economic Behavior, Elsevier, vol. 67(2), pages 708-719, November.
    10. Xiao, Baichun & Yang, Wei, 2021. "A Bayesian learning model for estimating unknown demand parameter in revenue management," European Journal of Operational Research, Elsevier, vol. 293(1), pages 248-262.
    11. N. Bora Keskin & Assaf Zeevi, 2014. "Dynamic Pricing with an Unknown Demand Model: Asymptotically Optimal Semi-Myopic Policies," Operations Research, INFORMS, vol. 62(5), pages 1142-1167, October.
    12. Sandholm,W.H., 2003. "Excess payoff dynamics, potential dynamics, and stable games," Working papers 5, Wisconsin Madison - Social Systems.
    13. Soonhui Lee & Tito Homem-de-Mello & Anton Kleywegt, 2012. "Newsvendor-type models with decision-dependent uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 76(2), pages 189-221, October.
    14. Suren Basov & Svetlana Danilkina & David Prentice, 2020. "When Does Variety Increase with Quality?," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 56(3), pages 463-487, May.
    15. Brandl, Florian & Brandt, Felix, 2024. "A natural adaptive process for collective decision-making," Theoretical Economics, Econometric Society, vol. 19(2), May.
    16. David Simchi-Levi & Rui Sun & Huanan Zhang, 2022. "Online Learning and Optimization for Revenue Management Problems with Add-on Discounts," Management Science, INFORMS, vol. 68(10), pages 7402-7421, October.
    17. Roy Allen & John Rehbeck, 2020. "Identification of Random Coefficient Latent Utility Models," Papers 2003.00276, arXiv.org.
    18. Hamsa Bastani & David Simchi-Levi & Ruihao Zhu, 2022. "Meta Dynamic Pricing: Transfer Learning Across Experiments," Management Science, INFORMS, vol. 68(3), pages 1865-1881, March.
    19. Thomas Loots & Arnoud V. den Boer, 2023. "Data‐driven collusion and competition in a pricing duopoly with multinomial logit demand," Production and Operations Management, Production and Operations Management Society, vol. 32(4), pages 1169-1186, April.
    20. Philip A. Haile & Ali Hortaçsu & Grigory Kosenok, 2008. "On the Empirical Content of Quantal Response Equilibrium," American Economic Review, American Economic Association, vol. 98(1), pages 180-200, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.03979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.