IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.03979.html
   My bibliography  Save this paper

Beyond Softmax: A New Perspective on Gradient Bandits

Author

Listed:
  • Emerson Melo
  • David Muller

Abstract

We establish a link between a class of discrete choice models and the theory of online learning and multi-armed bandits. Our contributions are: (i) sublinear regret bounds for a broad algorithmic family, encompassing Exp3 as a special case; (ii) a new class of adversarial bandit algorithms derived from generalized nested logit models \citep{wen:2001}; and (iii) \textcolor{black}{we introduce a novel class of generalized gradient bandit algorithms that extends beyond the widely used softmax formulation. By relaxing the restrictive independence assumptions inherent in softmax, our framework accommodates correlated learning dynamics across actions, thereby broadening the applicability of gradient bandit methods.} Overall, the proposed algorithms combine flexible model specification with computational efficiency via closed-form sampling probabilities. Numerical experiments in stochastic bandit settings demonstrate their practical effectiveness.

Suggested Citation

  • Emerson Melo & David Muller, 2025. "Beyond Softmax: A New Perspective on Gradient Bandits," Papers 2510.03979, arXiv.org.
  • Handle: RePEc:arx:papers:2510.03979
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.03979
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.03979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.