IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.18047.html
   My bibliography  Save this paper

Functional effects models: Accounting for preference heterogeneity in panel data with machine learning

Author

Listed:
  • Nicolas Salvad'e
  • Tim Hillel

Abstract

In this paper, we present a general specification for Functional Effects Models, which use Machine Learning (ML) methodologies to learn individual-specific preference parameters from socio-demographic characteristics, therefore accounting for inter-individual heterogeneity in panel choice data. We identify three specific advantages of the Functional Effects Model over traditional fixed, and random/mixed effects models: (i) by mapping individual-specific effects as a function of socio-demographic variables, we can account for these effects when forecasting choices of previously unobserved individuals (ii) the (approximate) maximum-likelihood estimation of functional effects avoids the incidental parameters problem of the fixed effects model, even when the number of observed choices per individual is small; and (iii) we do not rely on the strong distributional assumptions of the random effects model, which may not match reality. We learn functional intercept and functional slopes with powerful non-linear machine learning regressors for tabular data, namely gradient boosting decision trees and deep neural networks. We validate our proposed methodology on a synthetic experiment and three real-world panel case studies, demonstrating that the Functional Effects Model: (i) can identify the true values of individual-specific effects when the data generation process is known; (ii) outperforms both state-of-the-art ML choice modelling techniques that omit individual heterogeneity in terms of predictive performance, as well as traditional static panel choice models in terms of learning inter-individual heterogeneity. The results indicate that the FI-RUMBoost model, which combines the individual-specific constants of the Functional Effects Model with the complex, non-linear utilities of RUMBoost, performs marginally best on large-scale revealed preference panel data.

Suggested Citation

  • Nicolas Salvad'e & Tim Hillel, 2025. "Functional effects models: Accounting for preference heterogeneity in panel data with machine learning," Papers 2509.18047, arXiv.org.
  • Handle: RePEc:arx:papers:2509.18047
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.18047
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sifringer, Brian & Lurkin, Virginie & Alahi, Alexandre, 2020. "Enhancing discrete choice models with representation learning," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 236-261.
    2. Han, Yafei & Pereira, Francisco Camara & Ben-Akiva, Moshe & Zegras, Christopher, 2022. "A neural-embedded discrete choice model: Learning taste representation with strengthened interpretability," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 166-186.
    3. Hajjem, Ahlem & Larocque, Denis & Bellavance, François, 2017. "Generalized mixed effects regression trees," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 114-118.
    4. Krueger, Rico & Bierlaire, Michel & Daziano, Ricardo A. & Rashidi, Taha H. & Bansal, Prateek, 2021. "Evaluating the predictive abilities of mixed logit models with unobserved inter- and intra-individual heterogeneity," Journal of choice modelling, Elsevier, vol. 41(C).
    5. Francesca Mandel & Riddhi Pratim Ghosh & Ian Barnett, 2023. "Neural networks for clustered and longitudinal data using mixed effects models," Biometrics, The International Biometric Society, vol. 79(2), pages 711-721, June.
    6. Hess, Stephane & Train, Kenneth E. & Polak, John W., 2006. "On the use of a Modified Latin Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit Model for vehicle choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 147-163, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Łukawska, Mirosława & Jensen, Anders Fjendbo & Rodrigues, Filipe, 2025. "Context-aware Bayesian mixed multinomial logit model," Journal of choice modelling, Elsevier, vol. 54(C).
    2. Krueger, Rico & Bierlaire, Michel & Daziano, Ricardo A. & Rashidi, Taha H. & Bansal, Prateek, 2021. "Evaluating the predictive abilities of mixed logit models with unobserved inter- and intra-individual heterogeneity," Journal of choice modelling, Elsevier, vol. 41(C).
    3. Ali, Azam & Kalatian, Arash & Choudhury, Charisma F., 2023. "Comparing and contrasting choice model and machine learning techniques in the context of vehicle ownership decisions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    4. Kim, Kyungah & Kim, Jinseok & Park, Subin & Lee, Jongsu & Kim, Junghun, 2025. "A machine learning technique embedded reference-dependent choice model for explanatory power improvement: Shifting of reference point as a key factor in vehicle purchase decision-making," Transportation Research Part B: Methodological, Elsevier, vol. 191(C).
    5. Wang, Shenhao & Mo, Baichuan & Zheng, Yunhan & Hess, Stephane & Zhao, Jinhua, 2024. "Comparing hundreds of machine learning and discrete choice models for travel demand modeling: An empirical benchmark," Transportation Research Part B: Methodological, Elsevier, vol. 190(C).
    6. Gu, Yu & Chen, Anthony & Kitthamkesorn, Songyot & Jang, Sunghoon, 2024. "Alternate closed-form weibit-based model for assessing travel choice with an oddball alternative," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    7. Niousha Bagheri & Milad Ghasri & Michael Barlow, 2025. "RUM-NN: A Neural Network Model Compatible with Random Utility Maximisation for Discrete Choice Setups," Papers 2501.05221, arXiv.org.
    8. Rizki, Muhamad & Rossolov, Oleksandr & Susilo, Yusak O., 2024. "The barriers, determinants, and willingness-to-pay in electric motorcycle conversion (EMC) adoption," Energy Policy, Elsevier, vol. 195(C).
    9. Kim, Eui-Jin & Bansal, Prateek, 2024. "A new flexible and partially monotonic discrete choice model," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    10. Frings, Oliver & Abildtrup, Jens & Montagné-Huck, Claire & Gorel, Salomé & Stenger, Anne, 2023. "Do individual PES buyers care about additionality and free-riding? A choice experiment," Ecological Economics, Elsevier, vol. 213(C).
    11. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    12. van Cranenburgh, Sander & Bliemer, Michiel C.J., 2019. "Information theoretic-based sampling of observations," Journal of choice modelling, Elsevier, vol. 31(C), pages 181-197.
    13. Kolarova, Viktoriya & Steck, Felix & Bahamonde-Birke, Francisco J., 2019. "Assessing the effect of autonomous driving on value of travel time savings: A comparison between current and future preferences," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 155-169.
    14. Carlos Madeira, 2019. "Adverse selection, loan access and default in the Chilean consumer debt market," Working Papers Central Bank of Chile 838, Central Bank of Chile.
    15. Faulques, Martin & Bonnet, Jean & Bourdin, Sébastien & Juge, Marine & Pigeon, Jonas & Richard, Charlotte, 2022. "Generational effect and territorial distributive justice, the two main drivers for willingness to pay for renewable energies," Energy Policy, Elsevier, vol. 168(C).
    16. Egan, Kevin & Herriges, Joseph, 2006. "Multivariate count data regression models with individual panel data from an on-site sample," Journal of Environmental Economics and Management, Elsevier, vol. 52(2), pages 567-581, September.
    17. Ioanna Arkoudi & Carlos Lima Azevedo & Francisco C. Pereira, 2021. "Combining Discrete Choice Models and Neural Networks through Embeddings: Formulation, Interpretability and Performance," Papers 2109.12042, arXiv.org, revised Sep 2021.
    18. Martínez-Pardo, Ana & Orro, Alfonso & Garcia-Alonso, Lorena, 2020. "Analysis of port choice: A methodological proposal adjusted with public data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 178-193.
    19. Friberg, Richard & Romahn, André, 2015. "Divestiture requirements as a tool for competition policy: A case from the Swedish beer market," International Journal of Industrial Organization, Elsevier, vol. 42(C), pages 1-18.
    20. Sándor Zsolt, 2013. "Monte Carlo Simulation in Random Coefficient Logit Models Involving Large Sums," Acta Universitatis Sapientiae, Economics and Business, Sciendo, vol. 1(1), pages 85-108, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.18047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.