IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.17385.html
   My bibliography  Save this paper

Bayesian Semi-supervised Inference via a Debiased Modeling Approach

Author

Listed:
  • Gozde Sert
  • Abhishek Chakrabortty
  • Anirban Bhattacharya

Abstract

Inference in semi-supervised (SS) settings has gained substantial attention in recent years due to increased relevance in modern big-data problems. In a typical SS setting, there is a much larger-sized unlabeled data, containing only observations of predictors, and a moderately sized labeled data containing observations for both an outcome and the set of predictors. Such data naturally arises when the outcome, unlike the predictors, is costly or difficult to obtain. One of the primary statistical objectives in SS settings is to explore whether parameter estimation can be improved by exploiting the unlabeled data. We propose a novel Bayesian method for estimating the population mean in SS settings. The approach yields estimators that are both efficient and optimal for estimation and inference. The method itself has several interesting artifacts. The central idea behind the method is to model certain summary statistics of the data in a targeted manner, rather than the entire raw data itself, along with a novel Bayesian notion of debiasing. Specifying appropriate summary statistics crucially relies on a debiased representation of the population mean that incorporates unlabeled data through a flexible nuisance function while also learning its estimation bias. Combined with careful usage of sample splitting, this debiasing approach mitigates the effect of bias due to slow rates or misspecification of the nuisance parameter from the posterior of the final parameter of interest, ensuring its robustness and efficiency. Concrete theoretical results, via Bernstein--von Mises theorems, are established, validating all claims, and are further supported through extensive numerical studies. To our knowledge, this is possibly the first work on Bayesian inference in SS settings, and its central ideas also apply more broadly to other Bayesian semi-parametric inference problems.

Suggested Citation

  • Gozde Sert & Abhishek Chakrabortty & Anirban Bhattacharya, 2025. "Bayesian Semi-supervised Inference via a Debiased Modeling Approach," Papers 2509.17385, arXiv.org.
  • Handle: RePEc:arx:papers:2509.17385
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.17385
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.17385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.