Increase Alpha: Performance and Risk of an AI-Driven Trading Framework
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Milena Vuletić & Felix Prenzel & Mihai Cucuringu, 2024. "Fin-GAN: forecasting and classifying financial time series via generative adversarial networks," Quantitative Finance, Taylor & Francis Journals, vol. 24(2), pages 175-199, January.
- Lahmiri, Salim & Bekiros, Stelios, 2020. "Intelligent forecasting with machine learning trading systems in chaotic intraday Bitcoin market," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
- Gil Cohen, 2022. "Algorithmic Trading and Financial Forecasting Using Advanced Artificial Intelligence Methodologies," Mathematics, MDPI, vol. 10(18), pages 1-13, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bartosz Bieganowski & Robert 'Slepaczuk, 2024. "Supervised Autoencoders with Fractionally Differentiated Features and Triple Barrier Labelling Enhance Predictions on Noisy Data," Papers 2411.12753, arXiv.org, revised Nov 2024.
- Sudersan Behera & Sarat Chandra Nayak & A. V. S. Pavan Kumar, 2024. "Evaluating the Performance of Metaheuristic Based Artificial Neural Networks for Cryptocurrency Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 1219-1258, August.
- Bartosz Bieganowski & Robert Ślepaczuk, 2024.
"Supervised Autoencoder MLP for Financial Time Series Forecasting,"
Working Papers
2024-03, Faculty of Economic Sciences, University of Warsaw.
- Bartosz Bieganowski & Robert Slepaczuk, 2024. "Supervised Autoencoder MLP for Financial Time Series Forecasting," Papers 2404.01866, arXiv.org, revised Jun 2024.
- Beatrice Acciaio & Stephan Eckstein & Songyan Hou, 2024. "Time-Causal VAE: Robust Financial Time Series Generator," Papers 2411.02947, arXiv.org.
- Minati, Ludovico & Mancinelli, Mattia & Frasca, Mattia & Bettotti, Paolo & Pavesi, Lorenzo, 2021. "An analog electronic emulator of non-linear dynamics in optical microring resonators," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
- Mammadov Huseyn & Africa Ruiz-Gandara & Luis Gonzalez-Abril & Isidoro Romero, 2024. "Adoption of Artificial Intelligence in Small and Medium-Sized Enterprises in Spain: The Role of Competences and Skills," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 26(67), pages 848-848, August.
- Lu Zhang & Lei Hua, 2025. "Major Issues in High-Frequency Financial Data Analysis: A Survey of Solutions," Mathematics, MDPI, vol. 13(3), pages 1-40, January.
- Jiawei Wang & Zhen Chen, 2024. "Factor-GAN: Enhancing stock price prediction and factor investment with Generative Adversarial Networks," PLOS ONE, Public Library of Science, vol. 19(6), pages 1-26, June.
- Mingzhe Wei & Georgios Sermpinis & Charalampos Stasinakis, 2023. "Forecasting and trading Bitcoin with machine learning techniques and a hybrid volatility/sentiment leverage," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 852-871, July.
- Nikolas Michael & Mihai Cucuringu & Sam Howison, 2024. "A GCN-LSTM Approach for ES-mini and VX Futures Forecasting," Papers 2408.05659, arXiv.org.
- Darya Lapitskaya & M. Hakan Eratalay & Rajesh Sharma, 2025. "Prediction of Cryptocurrency Prices with the Momentum Indicators and Machine Learning," Computational Economics, Springer;Society for Computational Economics, vol. 66(3), pages 2483-2501, September.
- Cao, Guangxi & Ling, Meijun, 2022. "Asymmetry and conduction direction of the interdependent structure between cryptocurrency and US dollar, renminbi, and gold markets," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
- Imjai, Narinthon & Yordudom, Tanakrit & Yaacob, Zulnaidi & Saad, Nor Hasliza Md & Aujirapongpan, Somnuk, 2025. "Impact of AI literacy and adaptability on financial analyst skills among prospective Thai accountants: The role of critical thinking," Technological Forecasting and Social Change, Elsevier, vol. 210(C).
- Ren, Yi-Shuai & Ma, Chao-Qun & Kong, Xiao-Lin & Baltas, Konstantinos & Zureigat, Qasim, 2022. "Past, present, and future of the application of machine learning in cryptocurrency research," Research in International Business and Finance, Elsevier, vol. 63(C).
- Iwao Maeda & David deGraw & Michiharu Kitano & Hiroyasu Matsushima & Hiroki Sakaji & Kiyoshi Izumi & Atsuo Kato, 2020. "Deep Reinforcement Learning in Agent Based Financial Market Simulation," JRFM, MDPI, vol. 13(4), pages 1-17, April.
- Ardita TODRI & Petraq PAPAJORGJI, 2024. "Artificial Intelligence Waves In Financial Services Industry: An Evolution Factorial Analysis," Regional Science Inquiry, Hellenic Association of Regional Scientists, vol. 0(2), pages 63-75, June.
- Joni Fat & Parwadi Moengin & Pudji Astuti & Sally Cahyati, 2025. "Sustainability In Forex Trading: A Review In Search Of The Sarsa-Fis Hybrid Method As A Novelty," Bulletin of Monetary Economics and Banking, Bank Indonesia, vol. 28(Spesial I), pages 71-94, February.
- Bhaskar Tripathi & Rakesh Kumar Sharma, 2023. "Modeling Bitcoin Prices using Signal Processing Methods, Bayesian Optimization, and Deep Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1919-1945, December.
- Gil Cohen, 2022. "Algorithmic Trading and Financial Forecasting Using Advanced Artificial Intelligence Methodologies," Mathematics, MDPI, vol. 10(18), pages 1-13, September.
- Jang Ho Kim & Seyoung Kim & Yongjae Lee & Woo Chang Kim & Frank J. Fabozzi, 2025. "Enhancing mean–variance portfolio optimization through GANs-based anomaly detection," Annals of Operations Research, Springer, vol. 346(1), pages 217-244, March.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2025-10-13 (Big Data)
- NEP-CMP-2025-10-13 (Computational Economics)
- NEP-FMK-2025-10-13 (Financial Markets)
- NEP-FOR-2025-10-13 (Forecasting)
- NEP-INV-2025-10-13 (Investment)
- NEP-RMG-2025-10-13 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.16707. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/arx/papers/2509.16707.html