IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.16334.html

Volatility Calibration via Automatic Local Regression

Author

Listed:
  • Ruozhong Yang
  • Hao Qin
  • Charlie Che
  • Liming Feng

Abstract

Managing exotic derivatives requires accurate mark-to-market pricing and stable Greeks for reliable hedging. The Local Volatility (LV) model distinguishes itself from other pricing models by its ability to match observable market prices across all strikes and maturities with high accuracy. However, LV calibration is fundamentally ill-posed: finite market observables must determine a continuously-defined surface with infinite local volatility parameters. This ill-posed nature often causes spiky LV surfaces that are particularly problematic for finite-difference-based valuation, and induces high-frequency oscillations in solutions, thus leading to unstable Greeks. To address this challenge, we propose a pre-calibration smoothing method that can be integrated seamlessly into any LV calibration workflow. Our method pre-processes market observables using local regression that automatically minimizes asymptotic conditional mean squared error to generate denoised inputs for subsequent LV calibration. Numerical experiments demonstrate that the proposed pre-calibration smoothing yields significantly smoother LV surfaces and greatly improves Greek stability for exotic options with negligible additional computational cost, while preserving the LV model's ability to fit market observables with high fidelity.

Suggested Citation

  • Ruozhong Yang & Hao Qin & Charlie Che & Liming Feng, 2025. "Volatility Calibration via Automatic Local Regression," Papers 2509.16334, arXiv.org, revised Sep 2025.
  • Handle: RePEc:arx:papers:2509.16334
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.16334
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christa Cuchiero & Wahid Khosrawi & Josef Teichmann, 2020. "A generative adversarial network approach to calibration of local stochastic volatility models," Papers 2005.02505, arXiv.org, revised Sep 2020.
    2. Jim Gatheral & Antoine Jacquier, 2014. "Arbitrage-free SVI volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 59-71, January.
    3. Jian Geng & I. Michael Navon & Xiao Chen, 2014. "Non-parametric calibration of the local volatility surface for European options using a second-order Tikhonov regularization," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 73-85, January.
    4. Judith Glaser & Pascal Heider, 2012. "Arbitrage-free approximation of call price surfaces and input data risk," Quantitative Finance, Taylor & Francis Journals, vol. 12(1), pages 61-73, August.
    5. Christa Cuchiero & Wahid Khosrawi & Josef Teichmann, 2020. "A Generative Adversarial Network Approach to Calibration of Local Stochastic Volatility Models," Risks, MDPI, vol. 8(4), pages 1-31, September.
    6. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2021. "Arbitrage-free neural-SDE market models," Papers 2105.11053, arXiv.org, revised Aug 2021.
    2. Vedant Choudhary & Sebastian Jaimungal & Maxime Bergeron, 2023. "FuNVol: A Multi-Asset Implied Volatility Market Simulator using Functional Principal Components and Neural SDEs," Papers 2303.00859, arXiv.org, revised Dec 2023.
    3. Meng cai & Tianze Li, 2025. "Efficient simulation of prices for European call options under Heston stochastic-local volatility model: a comparison of methods," Papers 2509.24449, arXiv.org, revised Oct 2025.
    4. Christoph Reisinger & Maria Olympia Tsianni, 2025. "Numerical analysis of a particle system for the calibrated Heston-type local stochastic volatility model," Papers 2504.14343, arXiv.org.
    5. Serena Della Corte & Laurens Van Mieghem & Antonis Papapantoleon & Jonas Papazoglou-Hennig, 2023. "Machine learning for option pricing: an empirical investigation of network architectures," Papers 2307.07657, arXiv.org, revised Dec 2025.
    6. Christa Cuchiero & Guido Gazzani & Sara Svaluto-Ferro, 2022. "Signature-based models: theory and calibration," Papers 2207.13136, arXiv.org.
    7. Anthony Coache & Sebastian Jaimungal, 2021. "Reinforcement Learning with Dynamic Convex Risk Measures," Papers 2112.13414, arXiv.org, revised Nov 2022.
    8. Magnus Wiese & Phillip Murray, 2022. "Risk-Neutral Market Simulation," Papers 2202.13996, arXiv.org.
    9. Li, Chen Xu & Li, Chenxu & Li, Chun, 2025. "Implied local volatility models," Journal of Empirical Finance, Elsevier, vol. 80(C).
    10. Ivan Guo & Grégoire Loeper & Shiyi Wang, 2022. "Calibration of local‐stochastic volatility models by optimal transport," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 46-77, January.
    11. Magnus Wiese & Ben Wood & Alexandre Pachoud & Ralf Korn & Hans Buehler & Phillip Murray & Lianjun Bai, 2021. "Multi-Asset Spot and Option Market Simulation," Papers 2112.06823, arXiv.org.
    12. Boswijk, H. Peter & Laeven, Roger J.A. & Vladimirov, Evgenii, 2024. "Estimating option pricing models using a characteristic function-based linear state space representation," Journal of Econometrics, Elsevier, vol. 244(1).
    13. Ciprian Necula & Gabriel Drimus & Walter Farkas, 2019. "A general closed form option pricing formula," Review of Derivatives Research, Springer, vol. 22(1), pages 1-40, April.
    14. Blanka Horvath & Josef Teichmann & Žan Žurič, 2021. "Deep Hedging under Rough Volatility," Risks, MDPI, vol. 9(7), pages 1-20, July.
    15. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    16. Hans Buhler & Blanka Horvath & Terry Lyons & Imanol Perez Arribas & Ben Wood, 2020. "A Data-driven Market Simulator for Small Data Environments," Papers 2006.14498, arXiv.org.
    17. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    18. Jing Wang & Shuaiqiang Liu & Cornelis Vuik, 2025. "Controllable Generation of Implied Volatility Surfaces with Variational Autoencoders," Papers 2509.01743, arXiv.org.
    19. Christa Cuchiero & Luca Di Persio & Francesco Guida & Sara Svaluto-Ferro, 2022. "Measure-valued processes for energy markets," Papers 2210.09331, arXiv.org.
    20. Daniel Guterding, 2023. "Sparse Modeling Approach to the Arbitrage-Free Interpolation of Plain-Vanilla Option Prices and Implied Volatilities," Risks, MDPI, vol. 11(5), pages 1-24, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.16334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.