IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.14080.html
   My bibliography  Save this paper

Dynamic Inverse Optimization under Drift and Shocks: Theory, Regret Bounds, and Applications

Author

Listed:
  • JINHO CHA

    (Gwinnett Technical College)

Abstract

The growing prevalence of drift and shocks in modern decision environments exposes a gap between classical optimization theory and real-world practice. Standard models assume fixed objectives, yet organizations from hospitals to power grids routinely adapt to shifting priorities, noisy data, and abrupt disruptions. To address this gap, this study develops a dynamic inverse optimization framework that recovers hidden, time-varying preferences from observed allocation trajectories. The framework unifies identifiability analysis with regret guarantees conditions are established for existence and uniqueness of recovered parameters, and sharp static and dynamic regret bounds are derived to characterize responsiveness to gradual drift and sudden shocks. Methodologically, a drift-aware estimator grounded in convex analysis and online learning theory is introduced, with finite-sample guarantees on recovery accuracy. Computational experiments in healthcare, energy, logistics, and finance reveal heterogeneous recovery patterns, ranging from rapid resilience to persistent vulnerability. Overall, dynamic inverse optimization emerges as both a theoretical contribution and a broadly applicable diagnostic tool for benchmarking resilience, uncovering hidden behavioral shifts, and guiding policy interventions in complex stochastic systems.

Suggested Citation

  • Jinho Cha, 2025. "Dynamic Inverse Optimization under Drift and Shocks: Theory, Regret Bounds, and Applications," Papers 2509.14080, arXiv.org.
  • Handle: RePEc:arx:papers:2509.14080
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.14080
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.14080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.