IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.10553.html
   My bibliography  Save this paper

A Stochastic Model for Illiquid Stock Prices and its Conclusion about Correlation Measurement

Author

Listed:
  • Erina Nanyonga
  • Juma Kasozi
  • Fred Mayambala
  • Hassan W. Kayondo
  • Matt Davison

Abstract

This study explores the behavioral dynamics of illiquid stock prices in a listed stock market. Illiquidity, characterized by wide bid and ask spreads affects price formation by decoupling prices from standard risk and return relationships and increasing sensitivity to market sentiment. We model the prices at the Uganda Securities Exchange (USE) which is illiquid in that the prices remain constant much of the time thus complicating price modelling. We circumvent this challenge by combining the Markov model (MM) with two models; the exponential Ornstein Uhlenbeck model (XOU) and geometric Brownian motion (gBm). In the combined models, the MM was used to capture the constant prices in the stock prices while the XOU and gBm captured the stochastic price dynamics. We modelled stock prices using the combined models, as well as XOU and gBm alone. We found that USE stocks appeared to have low correlation with one another. Using theoretical analysis, simulation study and empirical analysis, we conclude that this apparent low correlation is due to illiquidity. In particular data simulated from combined MM-gBm, in which the gBm portion were highly correlated resulted in a low measured correlation when the Markov chain had a higher transition from zero state to zero state.

Suggested Citation

  • Erina Nanyonga & Juma Kasozi & Fred Mayambala & Hassan W. Kayondo & Matt Davison, 2025. "A Stochastic Model for Illiquid Stock Prices and its Conclusion about Correlation Measurement," Papers 2509.10553, arXiv.org.
  • Handle: RePEc:arx:papers:2509.10553
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.10553
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.10553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.