Machine Learning with Multitype Protected Attributes: Intersectional Fairness through Regularisation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Edward W. (Jed) Frees & Fei Huang, 2023. "The Discriminating (Pricing) Actuary," North American Actuarial Journal, Taylor & Francis Journals, vol. 27(1), pages 2-24, January.
- Shubhadeep Chakraborty & Xianyang Zhang, 2019. "Distance Metrics for Measuring Joint Dependence with Application to Causal Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1638-1650, October.
- Lindholm, M. & Richman, R. & Tsanakas, A. & Wüthrich, M.V., 2022. "Discrimination-Free Insurance Pricing," ASTIN Bulletin, Cambridge University Press, vol. 52(1), pages 55-89, January.
- Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
- Devin G. Pope & Justin R. Sydnor, 2011. "Implementing Anti-discrimination Policies in Statistical Profiling Models," American Economic Journal: Economic Policy, American Economic Association, vol. 3(3), pages 206-231, August.
- Xi Xin & Fei Huang, 2024. "Antidiscrimination Insurance Pricing: Regulations, Fairness Criteria, and Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 28(2), pages 285-319, April.
- Mathias Lindholm & Ronald Richman & Andreas Tsanakas & Mario V. Wuthrich, 2022. "A Discussion of Discrimination and Fairness in Insurance Pricing," Papers 2209.00858, arXiv.org.
- Philippe Besse & Eustasio del Barrio & Paula Gordaliza & Jean-Michel Loubes & Laurent Risser, 2022. "A Survey of Bias in Machine Learning Through the Prism of Statistical Parity," The American Statistician, Taylor & Francis Journals, vol. 76(2), pages 188-198, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fei Huang & Silvana M. Pesenti, 2025. "Marginal Fairness: Fair Decision-Making under Risk Measures," Papers 2505.18895, arXiv.org.
- Boonen, Tim J. & Liu, Fangda, 2022. "Insurance with heterogeneous preferences," Journal of Mathematical Economics, Elsevier, vol. 102(C).
- Ronald Richman & Mario V. Wüthrich, 2023. "LASSO regularization within the LocalGLMnet architecture," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(4), pages 951-981, December.
- Mathias Lindholm & Ronald Richman & Andreas Tsanakas & Mario V. Wuthrich, 2022. "A multi-task network approach for calculating discrimination-free insurance prices," Papers 2207.02799, arXiv.org.
- Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2025. "Differential quantile-based sensitivity in discontinuous models," European Journal of Operational Research, Elsevier, vol. 322(2), pages 554-572.
- Calcetero Vanegas, Sebastián & Badescu, Andrei L. & Lin, X. Sheldon, 2024. "Effective experience rating for large insurance portfolios via surrogate modeling," Insurance: Mathematics and Economics, Elsevier, vol. 118(C), pages 25-43.
- Fahrenwaldt, Matthias & Furrer, Christian & Hiabu, Munir Eberhardt & Huang, Fei & Jørgensen, Frederik Hytting & Lindholm, Mathias & Loftus, Joshua & Steffensen, Mogens & Tsanakas, Andreas, 2024. "Fairness: plurality, causality, and insurability," LSE Research Online Documents on Economics 124031, London School of Economics and Political Science, LSE Library.
- Saeed Hayati & Kenji Fukumizu & Afshin Parvardeh, 2024. "Kernel mean embedding of probability measures and its applications to functional data analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(2), pages 447-484, June.
- Azar, Pablo D. & Micali, Silvio, 2018. "Computational principal agent problems," Theoretical Economics, Econometric Society, vol. 13(2), May.
- Luis A Barboza & Shu-Wei Chou-Chen & Paola Vásquez & Yury E García & Juan G Calvo & Hugo G Hidalgo & Fabio Sanchez, 2023. "Assessing dengue fever risk in Costa Rica by using climate variables and machine learning techniques," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 17(1), pages 1-13, January.
- Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
- Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
- Davide Pettenuzzo & Francesco Ravazzolo, 2016.
"Optimal Portfolio Choice Under Decision‐Based Model Combinations,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
- Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal Portfolio Choice under Decision-Based Model Combinations," Working Papers 80, Brandeis University, Department of Economics and International Business School.
- Davide Pettenuzzo & Francesco Ravazzolo, 2015. "Optimal Portfolio Choice under Decision-Based Model Combinations," Working Papers No 9/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal portfolio choice under decision-based model combinations," Working Paper 2014/15, Norges Bank.
- Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
- Keijsers, Bart & van Dijk, Dick, 2025.
"Does economic uncertainty predict real activity in real time?,"
International Journal of Forecasting, Elsevier, vol. 41(2), pages 748-762.
- Bart Keijsers & Dick van Dijk, 2022. "Does economic uncertainty predict real activity in real-time?," Tinbergen Institute Discussion Papers 22-069/III, Tinbergen Institute, revised 01 Mar 2023.
- Cai, Jinshu & Ding, Yanyan & Jian, Sisi, 2025. "Regulation of price discrimination in the transportation market under duopoly competition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 199(C).
- Basora, Luis & Viens, Arthur & Chao, Manuel Arias & Olive, Xavier, 2025. "A benchmark on uncertainty quantification for deep learning prognostics," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
- Hwang, Eunju, 2022. "Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
- R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.
- Armantier, Olivier & Treich, Nicolas, 2013.
"Eliciting beliefs: Proper scoring rules, incentives, stakes and hedging,"
European Economic Review, Elsevier, vol. 62(C), pages 17-40.
- Armantier, Olivier & Treich, Nicolas, 2010. "Eliciting Beliefs: Proper Scoring Rules, Incentives, Stakes and Hedging," IDEI Working Papers 643, Institut d'Économie Industrielle (IDEI), Toulouse.
- Armantier, Olivier & Treich, Nicolas, 2010. "Eliciting Beliefs: Proper Scoring Rules, Incentives, Stakes and Hedging," LERNA Working Papers 10.26.332, LERNA, University of Toulouse.
- Armantier, Olivier & Treich, Nicolas, 2010. "Eliciting Beliefs: Proper Scoring Rules, Incentives, Stakes and Hedging," TSE Working Papers 10-213, Toulouse School of Economics (TSE).
- Armantier, Olivier & Treich, Nicolas, 2010. "Eliciting Beliefs: Proper Scoring Rules, Incentives, Stakes and Hedging," TSE Working Papers 10-156, Toulouse School of Economics (TSE).
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2025-09-15 (Big Data)
- NEP-ECM-2025-09-15 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.08163. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/arx/papers/2509.08163.html