IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.08163.html
   My bibliography  Save this paper

Machine Learning with Multitype Protected Attributes: Intersectional Fairness through Regularisation

Author

Listed:
  • Ho Ming Lee
  • Katrien Antonio
  • Benjamin Avanzi
  • Lorenzo Marchi
  • Rui Zhou

Abstract

Ensuring equitable treatment (fairness) across protected attributes (such as gender or ethnicity) is a critical issue in machine learning. Most existing literature focuses on binary classification, but achieving fairness in regression tasks-such as insurance pricing or hiring score assessments-is equally important. Moreover, anti-discrimination laws also apply to continuous attributes, such as age, for which many existing methods are not applicable. In practice, multiple protected attributes can exist simultaneously; however, methods targeting fairness across several attributes often overlook so-called "fairness gerrymandering", thereby ignoring disparities among intersectional subgroups (e.g., African-American women or Hispanic men). In this paper, we propose a distance covariance regularisation framework that mitigates the association between model predictions and protected attributes, in line with the fairness definition of demographic parity, and that captures both linear and nonlinear dependencies. To enhance applicability in the presence of multiple protected attributes, we extend our framework by incorporating two multivariate dependence measures based on distance covariance: the previously proposed joint distance covariance (JdCov) and our novel concatenated distance covariance (CCdCov), which effectively address fairness gerrymandering in both regression and classification tasks involving protected attributes of various types. We discuss and illustrate how to calibrate regularisation strength, including a method based on Jensen-Shannon divergence, which quantifies dissimilarities in prediction distributions across groups. We apply our framework to the COMPAS recidivism dataset and a large motor insurance claims dataset.

Suggested Citation

  • Ho Ming Lee & Katrien Antonio & Benjamin Avanzi & Lorenzo Marchi & Rui Zhou, 2025. "Machine Learning with Multitype Protected Attributes: Intersectional Fairness through Regularisation," Papers 2509.08163, arXiv.org, revised Oct 2025.
  • Handle: RePEc:arx:papers:2509.08163
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.08163
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edward W. (Jed) Frees & Fei Huang, 2023. "The Discriminating (Pricing) Actuary," North American Actuarial Journal, Taylor & Francis Journals, vol. 27(1), pages 2-24, January.
    2. Shubhadeep Chakraborty & Xianyang Zhang, 2019. "Distance Metrics for Measuring Joint Dependence with Application to Causal Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1638-1650, October.
    3. Lindholm, M. & Richman, R. & Tsanakas, A. & Wüthrich, M.V., 2022. "Discrimination-Free Insurance Pricing," ASTIN Bulletin, Cambridge University Press, vol. 52(1), pages 55-89, January.
    4. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    5. Devin G. Pope & Justin R. Sydnor, 2011. "Implementing Anti-discrimination Policies in Statistical Profiling Models," American Economic Journal: Economic Policy, American Economic Association, vol. 3(3), pages 206-231, August.
    6. Xi Xin & Fei Huang, 2024. "Antidiscrimination Insurance Pricing: Regulations, Fairness Criteria, and Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 28(2), pages 285-319, April.
    7. Mathias Lindholm & Ronald Richman & Andreas Tsanakas & Mario V. Wuthrich, 2022. "A Discussion of Discrimination and Fairness in Insurance Pricing," Papers 2209.00858, arXiv.org.
    8. Philippe Besse & Eustasio del Barrio & Paula Gordaliza & Jean-Michel Loubes & Laurent Risser, 2022. "A Survey of Bias in Machine Learning Through the Prism of Statistical Parity," The American Statistician, Taylor & Francis Journals, vol. 76(2), pages 188-198, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei Huang & Silvana M. Pesenti, 2025. "Marginal Fairness: Fair Decision-Making under Risk Measures," Papers 2505.18895, arXiv.org.
    2. Boonen, Tim J. & Liu, Fangda, 2022. "Insurance with heterogeneous preferences," Journal of Mathematical Economics, Elsevier, vol. 102(C).
    3. Ronald Richman & Mario V. Wüthrich, 2023. "LASSO regularization within the LocalGLMnet architecture," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(4), pages 951-981, December.
    4. Mathias Lindholm & Ronald Richman & Andreas Tsanakas & Mario V. Wuthrich, 2022. "A multi-task network approach for calculating discrimination-free insurance prices," Papers 2207.02799, arXiv.org.
    5. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2025. "Differential quantile-based sensitivity in discontinuous models," European Journal of Operational Research, Elsevier, vol. 322(2), pages 554-572.
    6. Calcetero Vanegas, Sebastián & Badescu, Andrei L. & Lin, X. Sheldon, 2024. "Effective experience rating for large insurance portfolios via surrogate modeling," Insurance: Mathematics and Economics, Elsevier, vol. 118(C), pages 25-43.
    7. Fahrenwaldt, Matthias & Furrer, Christian & Hiabu, Munir Eberhardt & Huang, Fei & Jørgensen, Frederik Hytting & Lindholm, Mathias & Loftus, Joshua & Steffensen, Mogens & Tsanakas, Andreas, 2024. "Fairness: plurality, causality, and insurability," LSE Research Online Documents on Economics 124031, London School of Economics and Political Science, LSE Library.
    8. Saeed Hayati & Kenji Fukumizu & Afshin Parvardeh, 2024. "Kernel mean embedding of probability measures and its applications to functional data analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(2), pages 447-484, June.
    9. Azar, Pablo D. & Micali, Silvio, 2018. "Computational principal agent problems," Theoretical Economics, Econometric Society, vol. 13(2), May.
    10. Luis A Barboza & Shu-Wei Chou-Chen & Paola Vásquez & Yury E García & Juan G Calvo & Hugo G Hidalgo & Fabio Sanchez, 2023. "Assessing dengue fever risk in Costa Rica by using climate variables and machine learning techniques," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 17(1), pages 1-13, January.
    11. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    12. Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
    13. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    14. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    15. Keijsers, Bart & van Dijk, Dick, 2025. "Does economic uncertainty predict real activity in real time?," International Journal of Forecasting, Elsevier, vol. 41(2), pages 748-762.
    16. Cai, Jinshu & Ding, Yanyan & Jian, Sisi, 2025. "Regulation of price discrimination in the transportation market under duopoly competition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 199(C).
    17. Basora, Luis & Viens, Arthur & Chao, Manuel Arias & Olive, Xavier, 2025. "A benchmark on uncertainty quantification for deep learning prognostics," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    18. Hwang, Eunju, 2022. "Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    19. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.
    20. Armantier, Olivier & Treich, Nicolas, 2013. "Eliciting beliefs: Proper scoring rules, incentives, stakes and hedging," European Economic Review, Elsevier, vol. 62(C), pages 17-40.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.08163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.