IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.07987.html
   My bibliography  Save this paper

Automated Trading System for Straddle-Option Based on Deep Q-Learning

Author

Listed:
  • Yiran Wan
  • Xinyu Ying
  • Shengzhen Xu

Abstract

Straddle Option is a financial trading tool that explores volatility premiums in high-volatility markets without predicting price direction. Although deep reinforcement learning has emerged as a powerful approach to trading automation in financial markets, existing work mostly focused on predicting price trends and making trading decisions by combining multi-dimensional datasets like blogs and videos, which led to high computational costs and unstable performance in high-volatility markets. To tackle this challenge, we develop automated straddle option trading based on reinforcement learning and attention mechanisms to handle unpredictability in high-volatility markets. Firstly, we leverage the attention mechanisms in Transformer-DDQN through both self-attention with time series data and channel attention with multi-cycle information. Secondly, a novel reward function considering excess earnings is designed to focus on long-term profits and neglect short-term losses over a stop line. Thirdly, we identify the resistance levels to provide reference information when great uncertainty in price movements occurs with intensified battle between the buyers and sellers. Through extensive experiments on the Chinese stock, Brent crude oil, and Bitcoin markets, our attention-based Transformer-DDQN model exhibits the lowest maximum drawdown across all markets, and outperforms other models by 92.5\% in terms of the average return excluding the crude oil market due to relatively low fluctuation.

Suggested Citation

  • Yiran Wan & Xinyu Ying & Shengzhen Xu, 2025. "Automated Trading System for Straddle-Option Based on Deep Q-Learning," Papers 2509.07987, arXiv.org.
  • Handle: RePEc:arx:papers:2509.07987
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.07987
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.07987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.