IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.07987.html
   My bibliography  Save this paper

Automated Trading System for Straddle-Option Based on Deep Q-Learning

Author

Listed:
  • Yiran Wan
  • Xinyu Ying
  • Shengzhen Xu

Abstract

Straddle Option is a financial trading tool that explores volatility premiums in high-volatility markets without predicting price direction. Although deep reinforcement learning has emerged as a powerful approach to trading automation in financial markets, existing work mostly focused on predicting price trends and making trading decisions by combining multi-dimensional datasets like blogs and videos, which led to high computational costs and unstable performance in high-volatility markets. To tackle this challenge, we develop automated straddle option trading based on reinforcement learning and attention mechanisms to handle unpredictability in high-volatility markets. Firstly, we leverage the attention mechanisms in Transformer-DDQN through both self-attention with time series data and channel attention with multi-cycle information. Secondly, a novel reward function considering excess earnings is designed to focus on long-term profits and neglect short-term losses over a stop line. Thirdly, we identify the resistance levels to provide reference information when great uncertainty in price movements occurs with intensified battle between the buyers and sellers. Through extensive experiments on the Chinese stock, Brent crude oil, and Bitcoin markets, our attention-based Transformer-DDQN model exhibits the lowest maximum drawdown across all markets, and outperforms other models by 92.5\% in terms of the average return excluding the crude oil market due to relatively low fluctuation.

Suggested Citation

  • Yiran Wan & Xinyu Ying & Shengzhen Xu, 2025. "Automated Trading System for Straddle-Option Based on Deep Q-Learning," Papers 2509.07987, arXiv.org.
  • Handle: RePEc:arx:papers:2509.07987
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.07987
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adrian Millea, 2021. "Deep Reinforcement Learning for Trading—A Critical Survey," Data, MDPI, vol. 6(11), pages 1-25, November.
    2. Brenner, Menachem & Ou, Ernest Y. & Zhang, Jin E., 2006. "Hedging volatility risk," Journal of Banking & Finance, Elsevier, vol. 30(3), pages 811-821, March.
    3. Gunasekarage, Abeyratna & Power, David M., 2001. "The profitability of moving average trading rules in South Asian stock markets," Emerging Markets Review, Elsevier, vol. 2(1), pages 17-33, March.
    4. Taylan Kabbani & Ekrem Duman, 2022. "Deep Reinforcement Learning Approach for Trading Automation in The Stock Market," Papers 2208.07165, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elvira Caloiero & Massimo Guidolin, 2017. "Volatility as an Alternative asset Class: Does It Improve Portfolio Performance?," BAFFI CAREFIN Working Papers 1763, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    2. Abeyratna Gunasekarage & Anirut Pisedtasalasai & David M. Power, 2004. "Macroeconomic Influence on the Stock Market: Evidence from an Emerging Market in South Asia," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 3(3), pages 285-304, December.
    3. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    4. Ryś Przemysław & Ślepaczuk Robert, 2018. "Machine Learning Methods in Algorithmic Trading Strategy Optimization – Design and Time Efficiency," Central European Economic Journal, Sciendo, vol. 5(52), pages 206-229, January.
    5. Dan Anghel, 2013. "How Reliable is the Moving Average Crossover Rule for an Investor on the Romanian Stock Market?," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 5(2), pages 089-115, December.
    6. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    7. Susanne Griebsch, 2013. "The evaluation of European compound option prices under stochastic volatility using Fourier transform techniques," Review of Derivatives Research, Springer, vol. 16(2), pages 135-165, July.
    8. Chang, Chia-Lin & Jimenez-Martin, Juan-Angel & McAleer, Michael & Amaral, Teodosio Perez, 2013. "The rise and fall of S&P500 variance futures," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 151-167.
    9. Chris Doucouliagos, 2005. "Price exhaustion and number preference: time and price confluence in Australian stock prices," The European Journal of Finance, Taylor & Francis Journals, vol. 11(3), pages 207-221.
    10. Michael D. McKenzie, 2007. "Technical Trading Rules in Emerging Markets and the 1997 Asian Currency Crises," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 43(4), pages 46-73, August.
    11. David E. Allen & Michael McAleer & Robert Powell & Abhay K. Singh, 2013. "A Non-Parametric and Entropy Based Analysis of the Relationship between the VIX and S&P 500," JRFM, MDPI, vol. 6(1), pages 1-25, October.
    12. Chong, Terence Tai-Leung & Ip, Hugo Tak-Sang, 2009. "Do momentum-based strategies work in emerging currency markets?," Pacific-Basin Finance Journal, Elsevier, vol. 17(4), pages 479-493, September.
    13. Ali, Sajid & Raza, Naveed & Vinh Vo, Xuan & Le, Van, 2022. "Modelling the joint dynamics of financial assets using MGARCH family models: Insights into hedging and diversification strategies," Resources Policy, Elsevier, vol. 78(C).
    14. Yen-Sen Ni & Jen-Tsai Lee & Yi-Ching Liao, 2013. "Do variable length moving average trading rules matter during a financial crisis period?," Applied Economics Letters, Taylor & Francis Journals, vol. 20(2), pages 135-141, February.
    15. Almeida, Caio & Vicente, José, 2009. "Identifying volatility risk premia from fixed income Asian options," Journal of Banking & Finance, Elsevier, vol. 33(4), pages 652-661, April.
    16. Shuyang Wang & Diego Klabjan, 2023. "An Ensemble Method of Deep Reinforcement Learning for Automated Cryptocurrency Trading," Papers 2309.00626, arXiv.org.
    17. Terence Tai-Leung Chong & Wing-Kam Ng & Venus Khim-Sen Liew, 2014. "Revisiting the Performance of MACD and RSI Oscillators," JRFM, MDPI, vol. 7(1), pages 1-12, February.
    18. Chen, Hsuan-Chi & Chung, San-Lin & Ho, Keng-Yu, 2011. "The diversification effects of volatility-related assets," Journal of Banking & Finance, Elsevier, vol. 35(5), pages 1179-1189, May.
    19. Narayan, Paresh Kumar & Phan, Dinh Hoang Bach & Bannigidadmath, Deepa, 2017. "Is the profitability of Indian stocks compensation for risks?," Emerging Markets Review, Elsevier, vol. 31(C), pages 47-64.
    20. Afiruddin Tapa* & Mohd Hasimi Yaacob & Ahmad Husni Hamzah & Yean Soh Chuen, 2018. "Trading Performance Analysis: A Comparisons Between the Original MA Crossover and Modified MA Crossover Strategy," The Journal of Social Sciences Research, Academic Research Publishing Group, pages 933-941:6.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.07987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.